
JSIAM Letters Vol.2 (2010) pp.119–122 c⃝2010 Japan Society for Industrial and Applied Mathematics

Algorithm for computing Jordan basis

Kenji Kudo1, Yoshiaki Kakinuma2, Kazuyuki Hiraoka3, Hiroki Hashiguchi1, Yutaka Kuwajima1

and Takaomi Shigehara1

1 Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-
ku, Saitama City, Saitama 338-8570, Japan

2 NDD Corporation, 2-46-2, Hon-cho, Nakano-ku, Tokyo 164-0012, Japan
3 General Education, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo
City, Wakayama 644-0023, Japan

E-mail sigehara mail.saitama-u.ac.jp

Received March 31, 2010, Accepted July 7, 2010

Abstract

We propose a novel algorithm to compute a Jordan basis (JB) for an arbitrarily given square
matrix. The algorithm is based on the fact that a JB for a linear transformation f is obtained
by extending a JB for the restriction of f to its range R(f). The main ingredient of the algo-
rithm is singular value decomposition, and that ensures backward-stability of the algorithm.
To enhance the practical utility, we also introduce an automatic mechanism into the algorithm
such that it outputs all possible Jordan structures close to the exact one of the input matrix.

Keywords Jordan canonical form, Jordan basis, recursive algorithm

Research Activity Group Algorithms for Matrix / Eigenvalue Problems and their Applications

1. Introduction

Numerical algorithms to reveal the Jordan structure
for a given square matrix have been constructed mainly
along three lines; unitary deflation [1–4], matrix power-
ing [2, 5], and resolvent analysis [6, 7]. Unitary deflation
relies on the fact in the first step that any square matrix
can be reduced to a block triangular form by successive
applications of unitary transformations. This procedure
is enough to determine the Jordan canonical form (JCF)
of the input matrix. However, a further process includ-
ing nonunitary transformations is required to construct
a Jordan basis (JB) for the matrix. It should be stressed
that, even if such a series of unitary and nonunitary
transformations are established, it is inevitable to mul-
tiply all the transformation matrices in order to obtain
a JB concretely. The purpose of this paper is to propose
a novel numerical algorithm for revealing Jordan struc-
ture including JB for an arbitrarily given square matrix.
In the proposed algorithm, only unitary deflation is re-
quired to obtain a JB as well as the JCF for the input
matrix. The main tool of the algorithm is singular value
decomposition (SVD), which guarantees the backward
stability of the algorithm. The existence of tiny singular
values may disturb the numerical stability. Therefore we
introduce a mechanism into the algorithm such that, for
an input square matrix, all possible solutions are auto-
matically output. In other words, the algorithm outputs
all possible Jordan structures close to the exact one of
the input matrix, together with the information on nu-
merical error associated with each Jordan structure.

2. Theoretical aspects

Let V be a finite-dimensional linear space over C and
f a linear transformation on V . The kernel and the range

of f are denoted by N(f) and R(f), respectively. Let µ
be a complex constant. An ordered sequence (x1, . . . , xl)
of l vectors (l ≥ 1) of V with the property

(f − µ)(xk) = xk−1 (k = 1, . . . , l), x0 ≡ 0 (1)

is called a Jordan sequence (JS) of length l associated
with the eigenvalue µ of f . The set of JSs associated
with µ is denoted by Jµ. A JS in Jµ (µ ̸= 0) is called
regular, while a JS in J0 is called singular. A set of JSs
such that the vectors in the JSs compose a basis of V is
called a Jordan basis (JB) for f .
The following theorem gives the theoretical founda-

tion of this paper. Although the assertion is the same as
in [8], the proof is rather simplified. The restriction of f
to R(f) defines a linear transformation on R(f), that is
denoted by f ′ in the following.

Theorem 1 Let µj ̸= 0 (j = 1, . . . , nr) be the nonzero
constants. If the JSs

(x
(r)
j;1, . . . , x

(r)

j;l
(r)
j

) ∈ Jµj (j = 1, . . . , nr),

(x
(s)
j;1, . . . , x

(s)

j;l
(s)
j

) ∈ J0 (j = 1, . . . , n′
s)

are a JB for f ′, then f has a JB such that

(x
(r)
j;1, . . . , x

(r)

j;l
(r)
j

) ∈ Jµj (j = 1, . . . , nr),

(x
(s)
j;1, . . . , x

(s)

j;l
(s)
j

, x
(s)

j;l
(s)
j +1

) ∈ J0 (j = 1, . . . , n′
s),

(x
(s)
n′
s+j;1) ∈ J0 (j = 1, . . . , ns),

(2)

where the vectors x
(s)
n′
s+1;1, . . . , x

(s)
n′
s+ns;1

are a basis of a

complementary space of N(f) ∩R(f) in N(f).

Proof Since x
(s)

j;l
(s)
j

∈ R(f), there exists x
(s)

j;l
(s)
j +1

such

– 119 –

JSIAM Letters Vol. 2 (2010) pp.119–122 Kenji Kudo et al.

that x
(s)

j;l
(s)
j

= f(x
(s)

j;l
(s)
j +1

). Hence there exist the middle

JSs associated with µ = 0 in (2). The images of the
sequences

(x
(r)
j;1, . . . , x

(r)

j;l
(r)
j

) (j = 1, . . . , nr),

(x
(s)
j;2, . . . , x

(s)

j;l
(s)
j +1

) (j = 1, . . . , n′
s)

(3)

by f are

(µjx
(r)
j;1, µjx

(r)
j;2 + x

(r)
j;1, . . . , µjx

(r)

j;l
(r)
j

+ x
(r)

j;l
(r)
j −1

)

(j = 1, . . . , nr),

(x
(s)
j;1, . . . , x

(s)

j;l
(s)
j

) (j = 1, . . . , n′
s),

(4)

respectively. Since µj ̸= 0, the vectors in the sequences in
(4) are a basis of R(f) by assumption. Thus, we conclude
that the vectors in the sequences in (3) are a basis of
a complementary space of N(f) in V . The remaining

vectors x
(s)
j;1 (j = 1, . . . , n′

s) are a basis of N(f) ∩ R(f).
Hence, by adding the lower JSs in (2), we obtain a JB
for f in (2).

(QED)

3. Proposal of algorithm

3.1 Framework

The constructive proof in the previous section makes it
possible to establish a recursive algorithm for computing
a JB for the restriction of f to the generalized eigenspace
associated with the eigenvalue zero of f . The regular JSs
associated with the eigenvalue µ ̸= 0 of f correspond to
the singular JSs of f − µ, which can be obtained by re-
placing f by f − µ in Theorem 1. Thus we are led to
an algorithm for computing a JB for the linear transfor-
mation f . Here we assume that the distinct eigenvalues
µ1, . . . , µm of f are separately computed in advance.

JB algorithm
input: linear transformation f : V −→ V , and all the
distinct eigenvalues µ1, . . . , µm of f .
For each eigenvalue µi (i = 1, . . . ,m), repeat 1)–4).

1) Set f
(1)
i = f − µi and V

(1)
i = V .

2) For k = 1, . . . , ti, find the restriction f
(k+1)
i : V

(k+1)
i

−→ V
(k+1)
i of f

(k)
i to V

(k+1)
i ≡ R(f

(k)
i), where ti

(ti ≥ 1) is the minimum integer such that f
(ti+1)
i is

bijective.

3) Set qi;ti = dimV
(ti)
i − dimV

(ti+1)
i . Define

S(f
(ti)
i) ≡ {(xj) | j = 1, . . . , qi;ti}

with a basis x1, . . . , xqi;ti
of N(f

(ti)
i). Set p = qi;ti .

4) For k = ti − 1, . . . , 1, repeat a)–c).

a) For each sj = (xj;1, . . . , xj;lj) ∈ S(f
(k+1)
i) (j =

1, . . . , p), solve the linear system

f
(k)
i (xj;lj+1) = xj;lj

and set ext(sj) ≡ (xj;1, . . . , xj;lj , xj;lj+1). Define

S1(f
(k)
i) ≡ {ext(sj) | sj ∈ S(f

(k+1)
i), j = 1, . . . , p}.

b) Set qi;k = dimV
(k)
i − dimV

(k+1)
i − p. Define

S2(f
(k)
i) ≡ {(xj) | j = 1, . . . , qi;k}

with a basis x1, . . . , xqi;k of a complementary

space of N(f
(k)
i) ∩R(f

(k)
i) in N(f

(k)
i).

c) Define S(f
(k)
i) ≡ S1(f

(k)
i)∪S2(f

(k)
i). Set p = p+

qi;k.

output: S(f
(1)
1) ∪ · · · ∪ S(f

(1)
m).

Note that for each i = 1, . . . ,m, V
(k)
i = R(fk−1

i) and

hence f
(k)
i is just the restriction of f

(1)
i = f − µi to

R(fk−1
i) (k = 1, . . . , ti + 1), where R(f0

i) ≡ V .
The output of the JB algorithm gives a JB for f . In

particular, for each i = 1, . . . ,m, the JSs in S(f
(1)
i) gives

a JB for the restriction of f to the generalized eigenspace
G(µi) associated with the eigenvalue µi of f . The value
of qi;k in the algorithm means the number of JSs of
length k (k = 1, . . . , ti) associated with the eigenvalue
µi, and hence dimG(µi) =

∑ti
k=1(kqi;k) (i = 1, . . . ,m).

3.2 Matrix representation
Denote the set of l1 × l2 complex matrices by Cl1×l2

in general. Let F ∈ Cn×n be a singular matrix of rank
r = dimR(F) < n. Consider the matrix representation
F ′ ∈ Cr×r of the restriction of F to R(F). First we
decompose F to the form

F = IS. (5)

Here I ∈ Cn×r is injective, while S ∈ Cr×n is surjective.
The decomposition in (5) is indeed possible. In the pres-
ent implementation, we set I = U and S = DV ∗. Here

F = UDV ∗ (6)

is the singular value decomposition (SVD) of F , where

D = diag(σ1, . . . , σr) ∈ Cr×r,

U = (u1, . . . ,ur) ∈ Cn×r, (7)

V = (v1, . . . ,vr) ∈ Cn×r

with the singular values σ1 ≥ · · · ≥ σr > σr+1 = · · · =
σn = 0 and the corresponding left and right (orthonor-
mal) singular vectors uj and vj (j = 1, . . . , n). The col-
umn vectors of I compose a basis of R(F) and, with
respect to this basis, the matrix representation F ′ of the
restriction of F to R(F) should satisfy FI = IF ′. Hence
I(F ′ − SI) = O. Since I is injective, we conclude

F ′ = SI ∈ Cr×r.

This procedure to construct F ′ from F is essentially

similar to the procedure to obtain B
(2)
11 from B(1) by

a unitarily-equivalent transformation in [2, Section 10],
and it is used in step 2) in the JB algorithm.
Suppose that we have a singular JS (x′

1, . . . ,x
′
l) for

F ′. Then, together with xk ≡ Ix′
k (k = 1, . . . , l) as well

as a solution xl+1 of the linear system

Fxl+1 = xl, (8)

the sequence (x1, . . . ,xl,xl+1) is a singular JS for F .
Since we already have the SVD of F in (6), a solution of
(8) is given by using the Moore-Penrose inverse:

xl+1 = V D−1U∗xl = V D−1x′
l.

– 120 –

JSIAM Letters Vol. 2 (2010) pp.119–122 Kenji Kudo et al.

This is used in step 4)-a) in the JB algorithm.
To keep numerical accuracy in numerics, we have to

remove tiny singular values in the SVD of F . This is
carried out by introducing a small cut-off parameter ε:
If σr′ ≥ σ1ε > σr′+1 ≥ · · · ≥ σr > 0, then set σr′+1 =
· · · = σr = 0 in (7). The parameter r′ corresponds to
the numerical δ-rank of F with δ = σ1ε [9], and we
numerically regard u1, . . . ,ur′ as a basis of R(F) while
vr′+1, . . . ,vn are a basis of N(F).
We may choose different values of the cut-off parame-

ter, according to each eigenvalue as well as each recursive
step associated with the eigenvalue. However, in general
cases, it is hard to know appropriate magnitudes of the
parameters in advance. Therefore we introduce an au-
tomatic mechanism into the algorithm which makes it
possible to compute JBs in both cases whether each tiny
singular value is discarded or not.
With these notices, we are led to a possible matrix

representation of the JB algorithm. Here E ∈ Cn×n is
the identity matrix. For an input matrix F ∈ Cn×n, the
following algorithm outputs all the possible JBs of the
restriction of F to G(µ) for an assigned eigenvalue µ of
F , by making a thorough investigation of the cut-off pa-
rameters within a range [εminσ1, εmaxσ1]. Here σ1 is the
maximum singular value of SVD under the considera-
tion, and the two parameters εmin, εmax (εmin < εmax)
are chosen such that the range substantially covers the
tiny singular values.

JB algorithm (matrix version)
input: square matrix F ∈ Cn×n, an eigenvalue µ of F ,
and the parameters εmin, εmax.
Set S(µ) = ∅.
Set F

(1)
n1 = F − µE with n1 = n.

Call cal JB of GE(F
(1)
n1 , εmax, εmin,S(µ)).

output: S(µ).

proc cal_JB_of_GE(F
(k)
nk , εmax, εmin,S(µ))

Compute the singular pairs (σ
(k)
j ,u

(k)
j ,v

(k)
j) (j = 1, . . . ,

nk) of F
(k)
nk , where

σ
(k)
1 ≥ · · · ≥ σ

(k)

r
(k)
max

≥ εmaxσ
(k)
1 > · · · ≥ σ

(k)

r
(k)
min

≥ εminσ
(k)
1 > · · · ≥ σ(k)

nk
≥ 0.

Repeat the following procedure for r′k = r
(k)
min, . . . , r

(k)
max:

If r′k < nk, then perform a1)–a3).

a1) Define F
(k+1)
r′k

≡ D
(k)
r′k

V
(k)∗
r′k

U
(k)
r′k

∈ Cr′k×r′k with

D
(k)
r′k

= diag(σ
(k)
1 , . . . , σ

(k)
r′k

) ∈ Cr′k×r′k ,

U
(k)
r′k

= (u
(k)
1 , . . . ,u

(k)
r′k

) ∈ Cnk×r′k ,

V
(k)
r′k

= (v
(k)
1 , . . . ,v

(k)
r′k

) ∈ Cnk×r′k .

a2) Set N(F
(k)
r′k

) = span(v
(k)
r′k+1, . . . ,v

(k)
nk).

a3) Call cal JB of GE(F
(k+1)
nk+1 , εmax, εmin,S(µ)) with

nk+1 = r′k.

Otherwise, if r′k = nk, then perform b1)–b4).

b1) Set t = k − 1.

Table 1. Experimental environment.

CPU Intel Core(TM)2 Duo 2.66GHz

Memory 1.99GB

OS Windows XP SP3

Compiler cygwin gcc version 3.4.4

LAPACK version 3.0.8

b2) Set qt = nt − nt+1. Define

S(F (t)
nt

) ≡ {(v(t)
nt+1+1), . . . , (v

(t)
nt

)}.

Set p = qt.

b3) For k = t− 1, . . . , 1, repeat i)–iii).

i) For each s′j = (x′
j;1, . . . ,x

′
j;lj

) ∈ S(F
(k+1)
nk+1) (j =

1, . . . , p), set ext(s′j) = (xj;1, . . . ,xj;lj ,xj;lj+1)
with

xj;z = U (k)
nk+1

x′
j;z (z = 1, . . . , lj),

xj;lj+1 = V (k)
nk+1

D(k)−1

nk+1
x′
j;lj .

Define S1(F
(k)
nk) ≡ {ext(s′j) | s′j ∈ S(F

(k+1)
nk+1), j =

1, . . . , p}.
ii) Set qk = nk − nk+1 − p. Extend a basis {xj;1 |

(xj;1, . . .) ∈ S1(F
(k)
nk), j = 1, . . . , p} of N(F

(k)
nk) ∩

R(F
(k)
nk) to a basis of N(F

(k)
nk) by appending

x1, . . . ,xqk . Define

S2(F
(k)
nk

) ≡ {(xj) | j = 1, . . . , qk}.

iii) Define S(F
(k)
nk) ≡ S1(F

(k)
nk) ∪ S2(F

(k)
nk). Set p =

p+ qk.

b4) S(µ) = S(µ) ∪ {S(F (1)
n1)}.

Note that the multiplicity of the input eigenvalue µ
is not an input of the algorithm. For each µ, (in general
more than one) generalized eigenspacesG(µ) determined
from the JBs in the output S(µ) might have different
dimensions. Therefore one should select such combina-
tions of JBs for G(µi) from S(µi) (i = 1, . . . ,m) that∑m

i=1 dimG(µi) = n.

4. Numerical experiment

Numerical environment is summarized in Table 1. We
use ZGESVD routine in LAPACK for SVD. Let Jl(µ) be
the Jordan cell of size l associated with the eigenvalue µ.
Numerical test is performed by using 100 matrices with
a form

F = PJP−1, (9)

where

J =

3⊕
i=1

(
ni⊕

ji=1

Jlji (µi)

)
(10)

is a JCF with the eigenvalues (µ1, µ2, µ3) = (1, 1+α, 10)
and P is an invertible matrix with uniform random num-
bers in the range [−1, 1] for elements. In (10), ni ∈ [1, 3]
(i = 1, . . . , 3), lji ∈ [1, 3] (ji = 1, . . . , ni; i = 1, . . . , 3)
are random integers. The JCF as well as a JB for F in
(9) is obvious by construction, and a comparison with
numerical results is easily made.

– 121 –

JSIAM Letters Vol. 2 (2010) pp.119–122 Kenji Kudo et al.

We first compute the eigenvalues of F in (9) by us-
ing ZGEEV routine in LAPACK. This provides n distinct
eigenvalues µj (j = 1, . . . , n) in general, where n is ma-
trix size of F . To recover the Jordan structure of F , we
group neighboring eigenvalues together as follows:

1) Set Λ = {µ1, . . . , µn}. Set i = 1.

2) Repeat i)–iii) until Λ becomes the empty set.

i) Let µ be the eigenvalue with the maximal abso-
lute value in Λ. Define

Λi ≡
{
µj ∈ Λ

∣∣∣∣ ∣∣∣∣µj − µ

µ

∣∣∣∣ < 10−4

}
.

ii) Define µ′
i by the average of the eigenvalues in Λi.

iii) Set Λ = Λ− Λi. Set i = i+ 1.

We use the output µ′
1, µ

′
2, . . . as the input eigenvalues

for the JB algorithm.
Let J ′ and P ′ be the JCF and a JB, numerically de-

termined from the output of the JB algorithm. Let W1;2

be the direct sum of the generalized eigenspaces associ-
ated with the eigenvalues µ1 = 1 and µ2 = 1 + α, while
let W3 be the generalized eigenspace associated with the
eigenvalue µ3 = 10. Both ofW1;2 andW3 are determined
from P in (9). Numerical counterparts of W1;2 and W3

are denoted by W ′
1;2 and W ′

3 respectively, that are deter-
mined from the output of the JB algorithm. We estimate
two kinds of numerical errors:

E1 =
||FP ′ − P ′J ′||∞

||FP ′||∞
,

E2 = max{sin θW1;2,W ′
1;2
, sin θW3,W ′

3
},

where θV1,V2 is the largest canonical angle between
the subspaces V1 and V2 in general [10]. E1 measures
whether the numerical JSs indeed satisfy the relation in
(1) or not, while E2 measures whether the numerical JB
indeed spans the input generalized eigenspaces or not.
Fig. 1 shows the results for a well-conditioned case

of α = 1. In this case, we set εmin = εmax = 10−11.
The bar and broken line graphs show E1 and E2, re-
spectively, for 100 examples. Since εmin = εmax, the JB
algorithm outputs a single JB for each example. From
Fig. 1, we confirm that, even with the unsophisticated
cut-off parameters, the generalized eigenspaces as well as
their JBs are computed with high numerical accuracy.
Fig. 2 shows the results for an ill-conditioned case of

α = 10−8. Here we set εmin = εmax = 10−5. In this case,
owing to the lazy selection of the cut-off parameters, the
JB algorithm fails to reproduce the input generalized
eigenspaces. Indeed, we observe E2 > 10−2 in 43 exam-
ples among all. (Note that E2 = 10−2 means that the
largest canonical angle is 0.573 degree.) To remedy this,
we set εmin = 10−18 and εmax = 10−6 in the JB algo-
rithm. Fig. 3 shows the results for this case. In this case,
the JB algorithm outputs a number of JBs for each ex-
ample in general, and in Fig. 3, we show the result with
the JB which minimizes E2 for each. We confirm from
Fig. 3 that the overlap between the input and output
generalized eigenspaces is drastically improved. Indeed,
we attain E2 < 10−2 in 98 examples of all.
In several examples in Fig. 3, we find more than one

JBs that satisfy E1 ≤ 10−12 as well as E2 ≤ 10−3. This

200 40 60 80 100

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10
−16

10−18

Fig. 1. E1 (bar graph) and E2 (broken line) for 100 examples in
case of α = 1. Here we set εmin = εmax = 10−11.

200 40 60 80 100

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10
−16

10−18

Fig. 2. E1 (bar graph) and E2 (broken line) for 100 examples in
case of α = 10−8. Here we set εmin = εmax = 10−5.

200 40 60 80 100

100

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10
−16

10−18

Fig. 3. E1 (bar graph) and E2 (broken line) for 100 examples in

case of α = 10−8. Here we set εmin = 10−18 and εmax = 10−6.

indicates that there exist a number of Jordan structures
close to the input matrix F , and the JB algorithm suc-
ceeds in reproducing them.

Acknowledgments

We are grateful to the anonymous referee for helpful
comments, which served to improve the quality of this
paper. This work was partially supported by Grant-in-
Aid for Scientific Research (C) No.19560058.

References

[1] V. N. Kublanovskaya, On a method of solving the complete
eigenvalue problem for a degenerate matrix, USSR Comput.
Math. Math. Phys., 6 (1966) 1–14.

[2] G.H.Golub and J.H.Wilkinson, Ill-conditioned eigensystems

and the computation of the Jordan canonical form, SIAM
Rev., 18 (1976) 578–619.

[3] B. K̊agström and A. Ruhe, An algorithm for numerical com-

putation of the Jordan normal form of a complex matrix,
ACM Trans. Math. Software, 6 (1980) 398–419.

[4] D. S. Watkins, The Matrix Eigenvalue Problem, SIAM,
Philadelphia, 2007.

[5] G. Ohtake, M. Koga and M. Sampei, A method for numer-
ical computation of Jordan canonical form of matrix (in
Japanese), Trans. ISCIE, 15 (2002) 320–326.

[6] T. Suzuki and T. Suzuki, An eigenvalue problem for deroga-

tory matrices, J. Comput. Appl. Math., 199 (2007) 245–250.
[7] T. Suzuki and T. Suzuki, Computing the Jordan canonical

form in the finite precision arithmetic, in: Proc. of SCAN
2006, p.39, 2006.

[8] J. I. Hall, Another elementary approach to the Jordan form,
Amer. Math. Monthly, 98 (1991) 336–340.

[9] Å. Björck, Numerical Methods for Least Squares Problems,
SIAM, Philadelphia, 1996.

[10] G. W. Stewart, Matrix Algorithms, Vol. II: Eigensystems,
SIAM, Philadelphia, 2001.

– 122 –

