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Abstract

In this paper, the pass rate of the NIST SP800-22 statistical test suite for the ideally true
random sequences is analyzed by the simulation of statistical tests, and derived by the theo-
retical analysis under the assumption that there are no correlation among tests. As examples
of chaos based system, Vector Stream Cipher (VSC128S) and the encryption system using
Arnold’s cat map are tested. The test results are compared with the theoretical one for the
true random sequences and validity of presented analysis is discussed.
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1. Introduction

As an application of chaos, random number generators
and pseudo random number generators based on chaotic
dynamics have been well investigated in various scientific
and engineering fields including information security. For
a correct and safety application, the randomness of gen-
erated sequences and its evaluation are very important.
In order to evaluate the randomness, several statistical
test suites have been proposed. NIST SP800-22 is one of
the statistical test suites, and it was used for the evalu-
ation of AES candidates [1, 2]. For chaos based random
and pseudo random number generators, this test suite
is also useful to evaluate the randomness of generated
sequences.
NIST SP800-22 consists of 15 kinds of statistical tests

and provides the criteria to determine whether given se-
quences are random or not for each statistical test. How-
ever, it was not mentioned in the criteria how many the
ratio of passing all the 15 kinds of tests should be for the
target generator to be regarded as the perfect random
number generator. In this paper, the test suite NIST
SP800-22 is focused on and its statistical properties for
the idealized perfect random number generator are nu-
merically analyzed. The results are compared with typ-
ical pseudo random number generators including chaos
based system.

2. Statistical test of randomness

The random bit sequence should be independent and
unpredictable. These are also characteristics of chaotic
dynamics. Therefore, chaotic dynamics is one of the can-
didates for the basic mechanism to produce random bit
sequences. Since randomness is a probabilistic property,
it can be characterized and described in terms of prob-
ability.
There are various statistical tests that can be applied

to a sequence to attempt to compare and evaluate the
sequence to a true random sequence. The Special Publi-
cation (SP) 800-22 revision 1 proposed by National Insti-
tute of Standards and Technology (NIST) is a statistical
test suite that consists of the 15 kinds of statistical tests
of randomness [1]. The list of 15 tests and tests param-
eters are shown in Tables 1 and 2.
According to [1], the basic testing process common to

each test is explained in the following. Targets of test
are binary sequences of ‘0’ and ‘1’ with the length n.
Here, the number of tested sequence is m and it is called
sample size. At a test for one sequence, a statistics called
P-value is calculated from the tested sequence. The P-
value is the probability that a perfect random number
generator would have produced a sequence less random
than the tested sequence. It is determined whether the
tested sequence is random or not random by the testing
hypothesis. The null hypothesis H0 under test is that
the sequence being tested is random, and the alternative
hypothesis H1 is that the sequence being tested is not
random. If P-value ≥ α, the null hypothesis is accepted
(i.e., the target is random), and otherwise rejected (i.e.,
the target is not random), where α = 0.01 is a signifi-
cance level of the testing hypothesis.
For one test, m sequences are tested and m P-values

are obtained. Thus, the m decisions of randomness are
obtained for each test. These are only individual deci-
sions for each sequence. As a holistic interpretation of
these results, NIST adopted to include the following two
conditions to determine the target sequences are holisti-
cally random or not random.

Condition 1 Let ξ be a proportion of accepted se-
quences for the tests and it is called the pass rate of
sequences. If ξ is in the acceptable interval

p̂− 3

√
p̂(1− p̂)

m
≤ ξ ≤ p̂+ 3

√
p̂(1− p̂)

m
, (1)
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Table 1. List of NIST SP800-22 statistical tests.

No. Test Name

1 The Frequency (Monobit) Test

2 Frequency Test within a Block

3 The Runs Test

4 Tests for the Longest-Run-of-Ones in a Block

5 The Binary Matrix Rank Test

6 The Discrete Fourier Transform (Spectral) Test

7 The Non-overlapping Template Matching Test

8 The Overlapping Template Matching Test

9 Maurer’s “Universal Statistical” Test

10 The Linear Complexity Test

11 The Serial Test

12 The Approximate Entropy Test

13 The Cumulative Sums (Cusums) Test

14 The Random Excursions Test

15 The Random Excursions Variant Test

Table 2. Parameters used for NIST SP800-22 test suite.

Test Name Block Length

Frequency Test within a Block 20,000

The Non-overlapping Template Matching Test 9

The Overlapping Template Matching Test 9

Maurer’s “Universal Statistical” Test 7

The Linear Complexity Test 500

The Serial Test 10

The Approximate Entropy Test 10

Table 3. Count of passing each test and passing all of the 15 tests
for 100 times iterations (m = 1, 000).

Test Number of
Count of passing tests

No. sub-tests
out of 100 repetitions

VSC128S CatMap2D AES SHA-1

1 1 100 100 100 100

2 1 100 100 100 100

3 1 100 100 99 100

4 1 100 99 100 99

5 1 100 99 100 100

6 1 100 95 96 97

7 148 66 64 54 53

8 1 98 99 98 98

9 1 98 97 95 97

10 1 100 99 99 100

11 2 99 100 99 100

12 1 99 100 100 99

13 2 100 100 100 99

14 8 96 95 96 91

15 18 95 95 96 98

All(1-15) 188 (total) 56 55 43 41

the sequences are random, otherwise not random, where
p̂ = α− 1.

This interval corresponds to the three times of the
standard deviation of ξ for the true random sequences
that are produced by the perfect random number gener-
ator.

Condition 2 The distribution of P-values is examined
to ensure uniformity. If the obtained P-values are uni-
form, the sequences are random, otherwise not random.

Uniformity is determined by the χ2-test on the ob-
tained P-values. The interval between 0 and 1 is divided
into 10 sub-intervals, and the P-values that lie within
each i-th sub-interval are counted as Fi. Then a P-value

is calculated as

P-value T = igamc

(
9

2
,
χ2

2

)
, (2)

where igamc is the incomplete gamma function and

χ2 =
10∑
i=1

(
Fi −

m

10

)2

m

10

. (3)

If the condition

P-value T ≥ α T = 0.0001 (4)

is satisfied, then the P-values can be considered to be
uniformly distributed.
Results of applying the NIST statistical test suite

are shown in Table 3. Here, Vector Stream Cipher
(VSC128S) [3] and the encryption system using two di-
mensional cat map (CatMap2D) [4] are tested as ex-
amples of chaos based generator. VSC128S is a stream
cipher designed by ChaosWare, and it consists of the
combination of 8 pseudo chaotic one dimensional maps
with 32bits operation. CatMap2D is also a steam cipher,
and it adopts combined 4 two dimensional Arnold’s cat
maps instead of 8 one dimensional maps in VSC128S. In
comparison, SHA-1 and AES are also tested. The for-
mer is a hash function and hash results of plane texts
are tested as a pseudo random sequence. The latter is
a typical standard encryption system and the encrypted
texts are tested.
For each system, NIST statistical test suite is applied

100 times for m = 1, 000 binary sequences with length
n = 1, 000, 000, and the number of passing each kind
of test and the number of passing all of the 15 tests
are counted. These tests are performed by the test suite
program version 2.0b provided by NIST with the correc-
tion of the assessment condition and the discrete Fourier
transform test. In the original program (version 2.0b),
the former condition that corresponds to (1) was de-
scribed only for the case m = 100. The latter test was
corrected according to Kim et al. [5] since the variance
of theoretical distribution was not yet corrected in NIST
SP800-22 revision 1.
As a result, the rate of passing all 15 tests is around

55% for VSC128S and CatMap2D, and around 40% for
SHA-1 and AES, respectively. It is to be noticed that
there are obvious differences between their pass rates of
all of the tests.

3. Simulation of NIST SP800-22

NIST SP800-22 is based on the testing hypothesis us-
ing P-values. Since the P-values uniformly distribute in
the interval between 0 and 1 for the ideally true random
sequences, their statistical tests can be simulated by the
Monte Carlo method in which uniformly distributed ar-
tificial P-values are produced randomly. The procedure
of the simulation of statistical test suite is follows.

Step 1 An artificial P-value that uniformly distributes
in the interval between 0 and 1, is produced ran-
domly. This P-value corresponds to the p-value cal-
culated for the ideally true random sequence.
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Step 2 The condition P-value > α = 0.01 is examined
for the produced P-value.

Step 3 Steps 1 and 2 are iterated m times and the pass
rate ξ and the P-value T for one test are calculated.
Conditions 1 and 2 are examined and pass or non-
pass of one test is determined.

Step 4 Steps 1 to 3 are iterated K times, where K cor-
responds to the number of statistical tests (includ-
ing sub-tests). Then, pass or non-pass of all of K
tests is determined.

Some of the statistical tests constituted NIST SP800-
22 have several sub-tests. Therefore, the actual number
of tests is the total number of sub-tests. For an example,
the non-overlapping template marching test consists of
148 sub-tests corresponding to different templates when
the template length is 9. The number of sub-tests for
each test is also shown in Table 3, and the total number
K of tests is 188 for the parameters in Table 2.
As results of this simulation, pass rates P̂C1, P̂C2,

P̂Pass1, and P̂PassK could be obtained, where P̂C1 de-
notes the pass rate of Condition 1, P̂C2 denotes the pass
rate of Condition 2, P̂Pass1 denotes the pass rate of one
test, and P̂PassK denotes the pass rate of all of K tests.
Furthermore, the correlation coefficient that is denoted
by ρ̂C1,C2 between Conditions 1 and 2 could also be es-
timated.

4. Probability of passing all tests

The probability of passing all tests was firstly analyzed
by Okutomi et al. for Condition 1 [6]. Their analysis was,
however, insufficient to obtain the probability of passing
all tests, since the upper limit of the acceptable interval
for Condition 1 (Eq. (1)) was ignored and Condition 2
was not concerned. For more precise analysis, this paper
focuses on the probability of passing all tests for both of
Conditions 1 and 2.
For one test, pass or non-pass is determined by Condi-

tions 1 and 2, as previously mentioned in Section 2. Since
the latter is also the testing hypothesis for obtained P-
values, the pass rate PC2 of Condition 2 is determined
by its significance level α T such that PC2 = 1 − α T =
0.9999.
On the other hand, the pass rate PC1 of Condition 1

is determined by the distribution of ξ that is the pro-
portion of accepted sequences. The probability that one
true random sequence passes the test is p̂ = 1 − α by
the definition of testing hypothesis. Since the probabil-
ity that k out of m true random sequences pass the test,
obeys the binomial distribution, it is obtained as

P (k;m) = mCk × p̂k × (1− p̂)m−k, (5)

where k/m corresponds to ξ. The average of ξ is

µξ = p̂, (6)

and the standard deviation of ξ is

σξ =

√
p̂(1− p̂)

m
. (7)

Therefore, the pass rate of Condition 1 is exactly ob-

Table 4. Theoretical values of pass rates obtained by the bino-
mial distribution and the Gaussian distribution (K = 188).

(a) Binomial distribution.

m PC1 PPass1 PPassK = (PPass1)
K

100 98.162596% 98.152780% 3.003929%

500 99.479195% 99.469247% 36.770592%

1000 99.666846% 99.656880% 52.404673%

10000 99.689933% 99.679964% 54.736967%

(b) Gaussian distribution.

m PC1 PPass1 PPassK = (PPass1)
K

—– 99.730020% 99.720047% 59.034450%

Table 5. Estimated pass rates and correlation coefficient between
Conditions 1 and 2 (K = 188).

m P̂C1 P̂C2 P̂Pass1 ρ̂C1,C2 P̂PassK

100 98.17% 99.992% 98.16% −0.0012 3.20±0.18%

500 99.43% 99.990% 99.42% −0.0008 35.81±0.48%

1000 99.66% 99.991% 99.65% −0.0006 52.08±0.50%

10000 99.67% 99.993% 99.66% −0.0005 54.78±0.50%

tained as

PC1 =

k1∑
k=k0

P (k;m), (8)

where

k0 = max(⌈(µξ − 3σξ)×m⌉ , 0), (9)

and

k1 = min(⌊(µξ + 3σξ)×m⌋ ,m). (10)

Here, the range k0 ≤ k ≤ k1 corresponds to the range of
acceptance in (1). Since this range corresponds to three
times of the standard deviation σξ, the Gaussian approx-
imation of PC1 is also obtained by the error function as
erf(3/

√
2). In the analysis given by Okutomi et al. [6],

the upper limit k1 was fixed to m. Therefore, in the
case of m = 1, 000, their obtained probability PC1 =
0.996712 is slightly larger than the correct probability
PC1 = 0.99666846 (Table 4-(a)).
The probability of passing one test PPass1 is the prob-

ability that both Conditions 1 and 2 are simultane-
ously satisfied. If Conditions 1 and 2 have no correlation,
PPass1 is obtained as the direct product

PPass1 = PC1 × PC2. (11)

Furthermore, if results for the K tests in the test suite,
are not correlated to each other, the pass rate of all of
the K tests, PPassK , is also obtained as

PPassK =
K∏

k=1

PPass1 = (PPass1)
K . (12)

5. Numerical results and discussions

Results of numerical simulation are shown in Table
5, where K = 188, P̂C1, P̂C2, P̂Pass1 and ρ̂C1,C2 were
estimated by the 100,000 times simulations of Steps 1
to 3, and P̂PassK was estimated by the 10,000 times
simulations of Steps 1 to 4. The standard error of P̂PassK
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Fig. 1. Distribution of pass rate ξ for 200,000 samples.

is also shown as an error range of estimation. In the
case that m = 1, 000, the estimated pass ratio P̂PassK

is around 52%, and this value is close to the pass rate
for VSC128S and CatMap2D shown in Table 3. Since
the correlation coefficient ρ̂C1,C2 is too small, the pass
rate of Condition 1 and the pass rate of Condition 2 are
almost independent of each other.
The distributions of ξ were also obtained in cases of

m = 1, 000 and m = 10, 000 to examine its convergence
to the Gaussian distribution. The results are shown in
Fig. 1, where the red squares represent the distribution
of ξ, the green solid lines represent the Gaussian dis-
tribution, and the blue crosses represent the binomial
distribution. For the Gaussian distribution and the bi-
nomial distribution, their averages and variances are µξ

and σ2
ξ , respectively. These results indicate that the dis-

tribution of ξ obeys the binomial distribution, and it
approaches asymptotically to the Gaussian distribution
when the sample size m is increased.
The pass rates PC1, PPass1 and PPassK directly calcu-

lated by the (8), (11), (12) and Gaussian approximation,
are also shown in Table 4. The pass rate PC2 is 0.9999
as previously mentioned. These theoretical values given
by the binomial distribution, agree with the estimated
values shown in Table 5, and they converge to the val-
ues given by the Gaussian distribution as increasing the
sample size m.
As shown in Table 4-(a), the pass rate of all of the

K tests, PPassK , is almost 52% for the true random se-

quences in the case that K = 188 and the sample size
m = 1000. Furthermore, its limit of m to infinity, is
almost 59% (Table 4-(b)) that is given by the Gaus-
sian approximation, since the binomial distribution con-
verges to the Gaussian distribution for sufficiently large
m. These results indicate that the sufficient number of
repetition of the test suite is necessary to examine the
proportion to pass all of the tests.
In this paper, two kinds of independencies are assumed

for the analysis of pass rates. One is the independency
between Conditions 1 and 2 at one test, and the other is
the independency among the tests constituted the test
suite. The former independency is supported by the re-
sults for the correlation coefficients shown in Table 5.
Although plausibility of the latter independency could
not be mentioned here, if there are some positive corre-
lations among the actual tests, the pass rate of all of the
tests PPassK is expected to take larger value than (12).
Even in such case, (12) and its values shown in Table
4 might be useful guideline for the decision of the per-
fect random number generator, since they give the lower
bound of PPassK .

6. Conclusions

The pass rate of the NIST SP800-22 statistical test
suite for the ideally true random sequences was ana-
lyzed under the assumption that there are no correla-
tions among tests. The obtained pass rate was close to
the results for actual pseudo random number generators
based on chaos. An analysis including the correlation
among tests is one of the future works.
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