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Abstract

Some kinds of eigensolver for large sparse matrices require specification of parameters that
are based on rough estimates of the desired eigenvalues. In this paper, we propose a stochastic
estimation method of eigenvalue distribution using the combination of a stochastic estimator of
the matrix trace and contour integrations. The proposed method can be easily parallelized and
applied to matrices for which factorization is infeasible. Numerical experiments are executed
to show that the method can perform rough estimates at a low computational cost.
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1. Introduction

Interior eigenvalue problems arise in many kinds of
scientific calculation, and they are the most time con-
suming part of these calculations. To solve these eigen-
value problems, the Arnoldi method with the shift in-
vert technique [1], the Jacobi-Davidson method [1], and
the Sakurai-Sugiura method [2,3] are reasonable choices.
These methods require the specification of their param-
eters, such as shift points, the number of basis vectors,
or closed curves on the complex plane. One could specify
these parameters effectively if one had a rough estima-
tion of the eigenvalue distribution. To estimate this dis-
tribution, some methods have been proposed, including
the method using Sylvester’s law of inertia and the al-
gebraic substructure method [4]. Both methods require
a matrix factorization, such as the LDLT factorization.
However, it is not feasible to apply these method to large
sparse matrices or matrices that are only referenced in
the form of matrix-vector multiplications. In this paper,
we propose a stochastic estimation method of the eigen-
value distribution that is based on a stochastic estimator
of the matrix trace. We evaluate the performance of the
proposed method by applying it to matrices from prac-
tical applications.
This paper is organized as follows. In Section 2, a

stochastic estimator of an eigenvalue distribution and
its parallelization are described. We show a simple im-
plementation of our method in Section 3. In Section 4,
we investigate the performance of our method through
numerical experiments with four matrices from Matrix
Market [5] and a matrix derived from a real-space den-
sity functional calculation. This is followed by the con-
cluding remarks in Section 5.

2. A stochastic estimator of eigenvalue

distribution

Let A,B ∈ Cn×n, z ∈ C be such that (zB − A) is a
regular matrix pencil. It is known that matrices A, B can
be decomposed A = URV H, B = UTV H, where R, T
are upper triangular matrices whose diagonal elements
are rjj , tjj , respectively, and U , V are unitary matrices.
Since

(zB −A)−1B = V (zT −R)−1TV H,

and the matrix trace is similarity-invariant,

tr((zB −A)−1B) = tr((zT −R)−1T )

=
n∑

j=1

tjj
ztjj − rjj

=
n′∑
j=1

1

z − λj
, (1)

where

tjj

{
̸= 0 (1 ≤ j ≤ n′),

= 0 (n′ + 1 ≤ j ≤ n),

and λj = rjj/tjj (j = 1, 2, . . . , n′) are finite eigenvalues
of the matrix pencil (A,B).
When the contour integration

µ =
1

2πi

∮
Γ

tr((zB −A)−1B)dz

=
1

2πi

∮
Γ

n′∑
j=1

1

z − λj
dz (2)

is performed, the eigenvalue count µ in a positively ori-
ented Jordan curve Γ is derived by the residue theorem.
To discretize (2), an N -point quadrature rule is applied
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and we approximate µ by

µ ≈ µ̂ =

N−1∑
k=0

wk tr((zkB −A)−1B), (3)

where zj and wj are a quadrature point and a weight,
respectively. In the case of the trapezoidal rule on a circle
with a center γ and a radius ρ, quadrature points and
weights are defined by

zk = γ + ρe
2πi
N (k+ 1

2 ), k = 0, 1, . . . , N − 1,

and

wk =
zk − γ

N
, k = 0, 1, . . . , N − 1,

respectively, where i is the imaginary unit. According
to [3], when the contour path is a circle, (3) is written
as

µ̂ =
n′∑
j=1

1

1 +

(
γ − λj

ρ

)N
, (4)

where |(γ − λ1)/ρ| ≤ |(γ − λ2)/ρ| ≤ · · · ≤ |(γ − λn′)/ρ|.
Let m′ be an integer such that ρ/{1 + [(γ − λj)/ρ]

N} =
O(ε) for any j with m′ < j ≤ n′ for sufficiently small
ε > 0. Then (4) can be expressed as

µ̂ =

m′∑
j=1

1

1 +

(
γ − λj

ρ

)N
+O(ε). (5)

Thus, the eigenvalues that exist nearby and outside of Γ
are attributed to quadrature error.
According to [6,7], an unbiased estimation of the ma-

trix trace is given by

tr((zkB −A)−1B) ≈ 1

s

s∑
j=1

vj
T(zkB −A)−1Bvj , (6)

where s is the number of sample vectors and vj are vec-
tors whose entries take 1 or −1 with equal probability.
Using (6), one can estimate µ̂ as

µ̂ ≈ µ̃

=
1

s

N−1∑
k=0

wk

s∑
j=1

[vj
T(zkB −A)−1Bvj ]. (7)

Thus, the most time consuming part of the estimation
of the trace of (zkB − A)−1B is the solution of s inde-
pendent linear systems

(zkB −A)xk
j = Bvj ,

j = 1, 2, . . . , s, k = 0, 1, . . . , N − 1. (8)

The subscript of xk
j refers the sample vector vj and the

superscript refers the quadrature point zk. If the matri-
ces A and B are large sparse matrices or they are only
referenced in the form of matrix-vector multiplications,
an iterative method is a reasonable choice to solve these
linear systems. Additionally, if B is the identity matrix
I, the linear systems (8) are written as (zkI−A)xk

j = vj .
In this case, the shifted Krylov subspace method [8, 9]

1: Input : A,B, α, β, nc, N, s
2: Output : µ̃1, µ̃2, . . . , µ̃nc

3: Set vj whose elements take 1 or −1 with equal prob-
ability, for j = 1, 2, . . . , s

4: ρ = (β − α)/2nc

5: for ℓ = 1, 2, . . . , nc do
6: γℓ = α+ (2ℓ− 1)ρ
7: zℓk = γℓ + ρe(2πi/N)(k+1/2)

8: Solve (zℓkB − A)xℓk
j = Bvj for j = 1, 2, . . . , s,

k = 0, 1, . . . , N − 1
9: µ̃ℓ = [ρ/(sN)]

∑N−1
k=0 e(2πi/N)(k+1/2)

∑s
j=1 vj

Txℓk
j

10: end for

Fig. 1. Algorithm.

can be applied to solve simultaneously the linear systems
(zkI−A)xk

j = vj for the scalar parameters zk. By using
the shifted Krylov subspace method, the total number
of matrix-vector multiplications in each iteration is re-
duced to 1/N that of solving N systems separately by
the normal Krylov subspace method. When A is a real
symmetric matrix, (zkI − A) is a complex symmetric
(but not Hermitian) matrix. The shifted conjugate or-
thogonal conjugate gradient (COCG) method [10,11] is
a reasonable choice to solve linear systems of complex
symmetric matrices. Furthermore, our method does not
require the solution vectors xk

j , but only the inner prod-

ucts vj
Txk

j . In such a case, we can calculate these inner
products by scalar recurrences (see [11]). Thus, mem-
ory allocation for the solution vectors and the auxiliary
vectors of the shifted systems is not required.
A stochastic estimation method of the eigenvalue dis-

tribution is defined by the estimator of the eigenvalue
count straightforwardly. Let Γ be a given Jordan curve,
D the domain closed by Γ, and Γℓ (ℓ = 1, 2, . . . , nc)
a Jordan curve which closes sub-domain Dℓ such that
D = D1 + D2 + · · · + Dnc . It is easy to see that the
estimations of the eigenvalue count in Γℓ can be exe-
cuted independently. Below this independence, there is
another independence: that of the solutions of the linear
systems (8). Furthermore, the linear solver can be par-
allelized, if it is possible. Thus, our method is efficient
on modern massively parallel computing environments.

3. Implementation

In this section, we describe a simple implementation
of our method in which A is a Hermitian matrix and
B is a non-singular Hermitian matrix. The algorithm of
the implementation is shown in Fig. 1. For simplicity, we
assume the Jordan curves are circles. This algorithm es-
timates the eigenvalue distribution in the interval [α, β]
on the real axis. nc circles are placed so that each circle
occupies an equally separated sub-interval. ρ is the ra-
dius of all circles and γℓ is the center of the ℓth circle.
µ̃ℓ is the estimated eigenvalue count in the ℓth circle.
The same number of quadrature points N is set for each
circle.
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Table 1. Matrix properties.

Matrix pencil Size nnz(A) nnz(B) Type(A) Type(B) Center Radius #eig in Γ

LUND 147 1298 1294 Indefinite Indefinite 1.0× 104 1.0× 104 40
BCSST07 420 4140 3836 Positive definite Positive semi-definite 0.23 0.17 398
PLAT1919 1919 17159 — Indefinite — 2.0× 107 2.5× 107 40
BCSST13 2003 42943 11973 Positive definite Positive semi-definite 3.0× 103 2.0× 103 11

4. Numerical experiments

In this section, we perform numerical experiments to
evaluate the efficiency of our method by using the al-
gorithm shown in Fig. 1. Examples 1 and 2 are carried
out using Matlab 7.4, and Example 3 is carried out us-
ing PGI Fortran 90. All operations are done in double
precision arithmetic.

4.1 Example 1

In Example 1, we investigate how the eigenvalue count
changes for an increase in the number of quadrature
points N . We evaluate the effect of numerical integra-
tions (3) on the eigenvalue count without trace estima-
tions. The exact value of the matrix trace is calculated
using the relation described in (1). The eigenvalues λj

are obtained by Matlab function eig. The test prob-
lems were taken from Matrix Market; their properties
are shown in Table 1. All eigenvalue problems are that
of real symmetric matrices. We set nc = 1 for the al-
gorithm. Columns nnz(A) and nnz(B) show the number
of non-zero entries of matrices A and B, respectively.
Columns Type(A) and Type(B) show the properties of
A and B. Columns Center and Radius show the center
and radius of the circles, respectively. The column #eig
in Γ shows the number of eigenvalues in Γ. The number
of eigenvalues is calculated by using the results of eig.
The number of quadrature points N is set to be 4, 8,
16, 32, and 64. The results of this example are shown in
Table 2. All results converge to the exact values.

4.2 Example 2

In Example 2, we investigate how the eigenvalue count
changes for an increase in the number of sample vectors
s. The test matrices used are the same as those in Ex-
ample 1, s is set to from 10 to 1000, nc is set to 1, and
the linear systems are solved using the Matlab function
mldivide. The number of quadrature points is set to
N = 16. The elements of the sample vectors are given by
the Matlab function rand, and their random seed is set
by rand(’twister’,5489). The results of this example
are shown in Table 3. We consider the exact eigenvalue
count µ̂ to be that shown for the N = 16 case in Table 2.
Increasing s does not much effect the efficiency or accu-
racy of the eigenvalue count, even though it increases
the computational cost. The trace estimation is slow in
converging to the exact value because the convergence
rate is O(

√
s). Similar results on trace estimations are

shown in [6].

4.3 Example 3

In Example 3, the test matrix is derived from real-
space density functional calculations [12,13]. It is a stan-
dard eigenvalue problem Ax = λx, where A is a real

Table 2. Results for Example 1.

N
eigenvalue count

LUND BCSST07 PLAT1919 BCSST13

4 38.024 318.03 55.559 10.917
8 38.268 364.80 42.350 10.926

16 38.880 392.98 40.606 10.988
32 39.373 397.89 39.945 11.000

64 39.749 398.00 39.540 11.000
exact 40.000 398.00 40.000 11.000

Table 3. Results for Example 2.

#vectors
eigenvalue count

LUND BCSST07 PLAT1919 BCSST13

10 44.344 391.08 40.759 12.866
20 43.394 392.58 40.371 11.747
30 43.195 391.92 40.926 10.765

40 39.547 393.83 39.874 10.590
50 40.039 393.09 41.018 10.313

100 37.716 392.27 40.632 11.293
200 39.805 393.45 40.341 11.460

500 41.147 392.76 40.542 11.104
1000 39.874 392.53 40.731 11.229
exact 38.880 392.98 40.606 10.988

symmetric matrix and is only referenced in the form
of matrix-vector multiplications. Thus, applying conven-
tional approaches mentioned in Section 1 is not feasible
in this case. In this problem, theMB smallest eigenvalues
are desired, where MB is the total number of orbitals.
The test matrix is derived from the density functional
calculation of a 510-atom system of silicon. The matrix
size is n = 175, 616, and the smallest 1,020 eigenpairs
are desired. The linear systems are solved by the shifted
COCG method using stopping criterion 10−4. One hun-
dred circles are placed in the interval [−0.230, 0.243].
The number of quadrature points of each circle is N = 8,
and the number of sample vectors is s = 20. The results
are shown in Fig. 2. The horizontal axis indicates the
index of the circles, and the vertical axis indicates the
eigenvalue count for the circle’s sub-domain. The exact
values are calculated by the conjugate gradient method
for eigenvalue problems [13]. Although s is significantly
smaller than the matrix size n, our method roughly esti-
mates the eigenvalue count. We obtained a rough eigen-
value distribution that can be used in setting parameters
for an accurate eigensolver using only a few quadrature
points and sample vectors.
The computational cost of the conjugate gradient

method for eigenvalue problems is O(MB
3) (see [13]).

We confirmed that the number of iteration of the shifted
COCGmethod is proportional to n in preliminary exper-
iments. The cost of the matrix-vector multiplication is
O(n) due to the sparsity of the matrix. Therefore, when
s is set much less than n and the scalar recurrences are
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Fig. 2. Eigenvalue distribution of a 510-atom system of silicon.

introduced to the shifted COCG method, the computa-
tional cost of our method is O(n2). Since n, the number
of grid points, is set to be proportional to MB, for ex-
ample n ≈ 200MB, the cost of our method is O(MB

2)
with a large coefficient. When the number of atoms in
the target system is large, our method can be employed
as a preprocessing of accurate eigensolvers, due to the
lower order of computational cost and the high parallel
performance.

5. Conclusions

We propose a stochastic estimation method of eigen-
value counting within a given closed curve. Our method
is feasible for large sparse matrices or matrices that are
only referenced in the form of matrix-vector multiplica-
tion. The stochastic estimation method for the eigen-
value distribution is defined by separating the given do-
main to several sub-domains and estimating the eigen-
value count in each sub-domain. Furthermore, because
the computation of our method has independence, it is
easy to execute on massively parallel computing environ-
ments. An acceleration technique is introduced to stan-
dard eigenvalue problems by using the shifted Krylov
subspace method. We show using numerical examples
that our method roughly estimates the eigenvalue distri-
bution using only a few quadrature points and sample
vectors. The parameters of eigensolvers can be effectively
set by using a given knowledge of the eigenvalue distri-
bution, and this distribution need not to be accurate,
but does need to be computed at low cost. Our method
is effective in such situations.
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