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Abstract

The Hasse-Witt matrix of a hyperelliptic curve gives partial information for the order of

the Jacobian of the curve, therefore the Hasse-Witt matrices can be used for point counting

of hyperelliptic curves. Bostan, Gaudry and Schost improved the Chudnovsky-Chudnovsky

algorithm and computed the Hasse-Witt matrices by using their improved algorithm for con-

structing hyperelliptic cryptosystems. The both algorithms need p-adic integers with finite

precision as the base operations. This paper shows improvements in the computation of the

Hasse-Witt matrix that reduces the required precision of the p-adic integers.
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1. Introduction

Hyperelliptic curve cryptosystems are constructed on
rational point groups of the Jacobians of hyperelliptic
curves defined over finite fields. Their security depends
on the difficulty of the discrete logarithm problems on
the rational point groups. The complexity of the prob-
lems is strongly affected by the group orders. Therefore,
in order to construct secure hyperelliptic curve cryp-
tosystems, one needs to know the group orders. The or-
der can be obtained from the characteristic polynomial
of the Frobenius map on the Jacobian. The residues of
the coefficients in the characteristic polynomial modulo
p can be derived from the Hasse-Witt matrix, where p
is the characteristic of the field over which the curve is
defined. Therefore, the Hasse-Witt matrices can be used
for computing the orders of the Jacobians of hyperellip-
tic curves and more general curves [1–5].

The Hasse-Witt matrix consists of coefficients of a
power of a polynomial defining the curve. These co-
efficients can be computed by using the Chudnovsky-
Chudnovsky algorithm [6] for a linear recurrence with
the polynomial coefficients. Bostan, Gaudry and Schost
[3, 5] improved the Chudnovsky-Chudnovsky algorithm
and computed the Hasse-Witt matrices for constructing
hyperelliptic curve cryptosystems over finite fields of rel-
atively large characteristics. These algorithms essentially
need p-adic integers with finite precision.

This paper shows a method to speed up the compu-
tation of the Hasse-Witt matrix. The proposed method
reduces the required precision of the p-adic integers by
using the reversals of polynomials.

This paper is organized as follows. Section 2 defines
the Hasse-Witt matrix and describes the computation of
the Hasse-Witt matrix. Section 3 shows improvements in
the computation of the Hasse-Witt matrix and Section

4 shows experimental results for the improvements. Fi-
nally, Section 5 concludes this paper.

2. Computation of the Hasse-Witt ma-

trix using a linear recurrence

This section defines the Hasse-Witt matrix of a hy-
perelliptic curve and summarizes the computation of the
Hasse-Witt matrix using a linear recurrence.

Let p be an odd prime and Fp be a finite field of order
p. A hyperelliptic curve C over Fp of genus g is defined
by

C : Y 2 = F (X), F (X) =

2g+1∑

i=0

fiX
i ∈ Fp [X], (1)

where F (X) is a monic (i.e. f2g+1 = 1) square-free poly-
nomial. For simplicity, g ≪ p and f0 6= 0 are assumed in
the following.

Definition 1 (Hasse-Witt matrix) Let hk denote

the coefficient of Xk in the polynomial (F (X))
p−1
2 for

C. The Hasse-Witt matrix of C is defined by a g × g
matrix over Fp whose (i, j)-th component is hjp−i:

H =





hp−1 h2p−1 · · · hgp−1

hp−2 h2p−2 · · · hgp−2

...
...

. . .
...

hp−g h2p−g · · · hgp−g




.

The following theorem is known for the Hasse-Witt
matrix.

Theorem 2 (Manin [7]) Let χp(X) denote the char-

acteristic polynomial of the p-power Frobenius map on

the Jacobian of C and H denote the Hasse-Witt matrix

of C, then

χp(X) ≡ (−1)gXg det (H − XI) mod p,
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where I is a g × g unit matrix.

Therefore, the residues of the coefficients in the charac-
teristic polynomial χp(X) modulo p can be computed
from the Hasse-Witt matrix H by using Theorem 2.

An usual polynomial powering, such as the binary

method, can compute all the coefficients of (F (X))
p−1
2

within O(M(gp) log p) operations in Fp , where M(n) de-
notes the cost for a multiplication of polynomials of
degree less than n in Fp [X]. On the other hand, the
Chudnovsky-Chudnovsky algorithm in [6, Section 6] can
compute the Hasse-Witt matrix within O(gω+1

M(
√

p)
+g3

M(
√

p) log p) operations, where O(gω) is the complex-
ity of a g×g matrix multiplication. Bostan, Gaudry and
Schost [3, 5] improved the Chudnovsky-Chudnovsky al-
gorithm and showed that, by using their improved algo-
rithm, the Hasse-Witt matrix can be computed within
O(gω+1√p + g3

M(
√

p)) operations. Therefore, these al-
gorithms are asymptotically faster than the algorithms
using polynomial powering. In the following, we describe
the computation of the Hasse-Witt matrix in [3, 5], re-
stricting ourselves to what we need for our improvements
in the later section.

Let rational functions ri(X) with a variable X for 1 ≤
i ≤ 2g + 1 be

ri(X) =

fi

(
i
p + 1

2
− X

)

f0X
, (2)

and a (2g + 1) × (2g + 1) matrix A(X) be

A(X) =





0 1 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 1
r2g+1(X) r2g(X) · · · r1(X)




. (3)

For any positive integer k, A(k) denotes the matrix
which is obtained by substituting X = k. Let hk be as
in Definition 1 and a (2g+1)-dimensional column vector
Uk be

Uk = t
(

hk−2g · · · hk−1 hk

)
, (4)

where h
−2g = · · · = h

−1 = 0. Then one can obtain a
linear recurrence given by

Uk = A(k)Uk−1

= A(k)A(k − 1) · · ·A(1)U0 (5)

from [8, Chapter IV] (see also [9, Problem 4] and [3, p.
52]). Therefore, one can compute

Ujp−1 = t
(

hjp−2g−1 · · · hjp−2 hjp−1

)

for 1 ≤ j ≤ g by using the linear recurrence (5) starting
from

U0 = t
(

0 · · · 0 f
p−1
2

0

)
,

which can be obtained from the constant term h0 = f
p−1
2

0

in (F (X))
p−1
2 . Then the Hasse-Witt matrix H can be

obtained from the components of the vectors Ujp−1 for
1 ≤ j ≤ g.

However, since the components in A(X) contain the

rational functions (2), divisions by p are involved in com-
puting Ujp−1. Therefore, those algorithms cannot be ex-
ecuted over Fp . The algorithm in [3,5] used p-adic inte-
gers Zp for computing the Hasse-Witt matrix, because p-
adic numbers that contain Zp permit divisions by p and
the residues of elements in Zp modulo p give elements
in Fp . The Hasse-Witt matrix can be obtained using Zp

as follows. First, one lifts the coefficients of F (X) to Zp

(i.e. one considers F (X) in Zp[X]) and computes all the
vectors Up−1, U2p−1, · · · , Ugp−1 over Zp. Then, by re-
ducing the components of these vectors modulo p, one
can obtain the Hasse-Witt matrix over Fp .

[3,5] computed those vectors over Zp with finite pre-
cision as follows. Let a matrix B(k) := f0kA(k) over Zp,
then the linear recurrence (5) implies

Ujp−1 =
1

f jp−1
0 (jp − 1)!

B(jp − 1) · · ·B(1)U0

for 1 ≤ j ≤ g. By the assumption g ≪ p, the factorial
term (jp − 1)! in the denominator is exactly divided by
pj−1. So, Ugp−1 for the case j = g requires the division
by the highest power of p, i.e. pg−1. Therefore, in order
to obtain the Hasse-Witt matrix over Fp , it is enough
to compute the vectors Up−1, U2p−1, · · · , Ugp−1 over Zp

with the finite precision up to g, whose arithmetic can
be done in Z/pg

Z.
The next section shows improvements in the computa-

tion of the Hasse-Witt matrix by reducing the required
precision.

3. Improvements

This section shows that the precision of the p-adic in-
tegers in the algorithms using the linear recurrence can
be reduced. Moreover, one can further reduce the preci-
sion by using the linear recurrence with the coefficients
of the reversal of a polynomial.

3.1 Reducing the precision of the p-adic integers

In the algorithms using the linear recurrence (5), the
divisions by p occur at the computation in

Ujp = A(jp)Ujp−1, 1 ≤ j < g.

The (2g + 1)-th component of Ujp is

hjp =
wj

p
,

where

wj =

f2g+1

(
(2g + 1)

p + 1

2
− jp

)

f0j
hjp−2g−1

+ · · · +
f1

(
p + 1

2
− jp

)

f0j
hjp−1 ∈ Zp.

If wj is computed over Z/pg
Z, then the significant pre-

cision of hjp is reduced from g to g−1, i.e. hjp should be
in Z/pg−1

Z. Note that hjp is in Zp, because hjp is the

coefficient in (F (X))
p−1
2 . Therefore, if Ujp is given, then

Ukp for k ≥ j can be computed with the same preci-
sion as Ujp, whose precision is lower than Ujp−1. On the
other hand, the components in the Hasse-Witt matrix
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can be obtained from the components of

Ujp = t
(

hjp−2g · · · hjp−1 hjp

)

for 1 ≤ j < g. Therefore, one can reduce the precision
by computing Up, U2p, . . . , U(g−1)p and Ugp−1 as follows.

In order to obtain the Hasse-Witt matrix over Fp , it
is enough to compute

Ugp−1 = A(gp − 1) · · ·A ((g − 1)p + 1) U(g−1)p

over Z/pZ. Moreover, since the division by p occurs at
the computation in U(g−1)p = A((g − 1)p)U(g−1)p−1, it
is enough to compute

U(g−1)p = A ((g − 1)p) · · ·A ((g − 2)p + 1) U(g−2)p

over Z/p2
Z. Similarly, it is enough to compute

Ujp = A (jp) · · ·A ((j − 1)p + 1) U(j−1)p

over Z/pg−j+1
Z for 1 ≤ j < g. Consequently, one can

reduce the precision by computing the vectors such that

Up = A(p) · · ·A(1)U0 over Z/pg
Z,

U2p = A(2p) · · ·A(p+1)Up over Z/pg−1
Z,

...

Ugp−1 = A(gp− 1) · · ·A ((g − 1)p + 1)U(g−1)p over Z/pZ

for obtaining the Hasse-Witt matrix.

3.2 Using the reversal of F (X)

The precision of the p-adic integers in Section 3.1 can
be further reduced by using the reversal of F (X). This
section shows a method to compute the Hasse-Witt ma-
trix using the reversal and estimates the efficiency of the
method.

Let the reversal [10, p. 254] of F (X) denoted by

rev(F (X)) := Xdeg F F (1/X).

Then, we can see that

rev((F (X))
p−1
2 ) = (rev(F (X)))

p−1
2 . (6)

Therefore, the coefficients of the higher degree in

(F (X))
p−1
2 can be obtained by computing the coeffi-

cients of the lower degree in (rev(F (X)))
p−1
2 using a

linear recurrence similar to (5).

Let Â(X) denote a (2g + 1) × (2g + 1) matrix with

the components defined by (2) for (rev(F (X)))
p−1
2 sim-

ilar to (3). Let ĥk denote the coefficient of Xk in

(rev(F (X)))
p−1
2 and a (2g +1)-dimensional column vec-

tor Ûk be

Ûk = t
(

ĥk−2g · · · ĥk−1 ĥk

)

similar to (4). Since (6) implies

h (2g+1)(p−1)
2 −i

= ĥi

for 0 ≤ i ≤ (2g + 1)(p − 1)/2, one can obtain the g-th
column components hgp−1, hgp−2, · · · and hgp−g in the
Hasse-Witt matrix by computing

Û p−1
2

= t
(

ĥ p−1
2 −2g · · · ĥ p−1

2 −1 ĥ p−1
2

)

= t
(

hgp+g · · · hgp−g+1 hgp−g

)

from Û0 = t ( 0 · · · 0 f
p−1
2

2g+1
) using the linear re-

currence. Similarly, one can obtain the other compo-
nents in the Hasse-Witt matrix by computing Û p−1

2 +ip

for 0 < i < ⌊g/2⌋. Consequently, one can obtain the
Hasse-Witt matrix by computing

Up, U2p, · · · , U⌈ g

2 ⌉p−1

and Û p−1
2

, Û p−1
2 +p, · · · , Û⌊ g

2 ⌋p−
p+1
2

,

instead of computing Up, · · · , U(g−1)p, Ugp−1. Applying
the result in Section 3.1 to these vectors, one can reduce
the precision for obtaining the Hasse-Witt matrix. That
is, one can compute

Up over Z/p⌈
g

2 ⌉Z, · · · , U⌈ g

2 ⌉p−1 over Z/pZ

for F (X) and

Û p−1
2

over Z/p⌊
g

2 ⌋Z, · · · , Û⌊ g

2 ⌋p−
p+1
2

over Z/pZ

for rev(F (X)).
In the following, we roughly estimate the efficiency

of the proposed method for g = 2 and 3. Let S(j) de-
note the cost in bit operations of computing Uk+p from
Uk over Z/pj

Z for any integer k ≥ 0. In the following
discussion, we assume that a multiplication in Z/pj

Z

costs mjα for a constant m and a real number α with
1 < α ≤ 2.

In the case of g = 2, the proposed method computes
Up−1 from U0 over Z/pZ within S(1) bit operations

and Û p−1
2

from Û0 over Z/pZ within S(1) bit opera-

tions. So, the proposed method needs about 2S(1) bit
operations. On the other hand, the previous method
in [3, 5] computes Up−1 from U0 over Z/p2

Z within
S(2) bit operations and U2p−1 from Up−1 over Z/p2

Z

within S(2) bit operations. So, the previous method
needs about 2S(2) bit operations in total. Consequently,
the proposed method can compute the Hasse-Witt ma-
trix S(2)/S(1) times faster than the previous method.
Assuming that S(j) is dominated by multiplications in
Z/pj

Z, we have S(2)/S(1) = 2α/1α = 2α. Therefore, we
can expect that the proposed method is about 2 to 4
times faster than the previous method.

In the case of g = 3, the proposed method computes
Up from U0 over Z/p2

Z within S(2) bit operations, U2p−1

from Up over Z/pZ within S(1) bit operations and Û p−1
2

from Û0 over Z/pZ within S(1) bit operations. So, the
proposed method needs about S(2) + 2S(1) bit oper-
ations. On the other hand, the previous method com-
putes Up−1 from U0 over Z/p3

Z within S(3) bit opera-
tions, U2p−1 from Up−1 over Z/p3

Z within S(3) bit oper-
ations and U3p−1 from U2p−1 over Z/p3

Z within S(3) bit
operations. So, the previous method needs about 3S(3)
bit operations. Consequently, the proposed method can
compute the Hasse-Witt matrix 3S(3)/(S(2) + 2S(1))
times faster than the previous method. Assuming that
S(j) is dominated by multiplications in Z/pj

Z, we have
3S(3)/(S(2)+2S(1)) = 3 ·3α/(2α +2 ·1α) = 3α+1/(2α +
2). Therefore, we can expect that the proposed method
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is about 2 to 4.5 times faster than the previous method.

4. Experimental results

This section shows experimental results of the compu-
tation of the Hasse-Witt matrices of hyperelliptic curves
of genus 2 and 3 by using the proposed method in Sec-
tion 3.2.

We implemented the algorithm shown in [3] using
Magma V2.15-10 [11]. We computed the Hasse-Witt ma-
trices of hyperelliptic curves defined over Fp for 16 ≤
log2 p ≤ 32 by using the proposed method. We also com-
puted the Hasse-Witt matrices with the fixed precision
shown in [3] for comparison. These experiments were run
on an AMD Opteron 246 2.0GHz.

Fig. 1 shows the result for hyperelliptic curves of genus
2. The vertical axis denotes time in seconds to compute
the Hasse-Witt matrix, and the horizontal axis denotes
bit length of p. In Fig. 1, “Original” denotes the time
to compute the Hasse-Witt matrix by using the method
in [3], and “This work” denotes the time to compute
the Hasse-Witt matrix by using the proposed method in
Section 3.2. Similarly, Fig. 2 shows the result for hyper-
elliptic curves of genus 3.

The result for genus 2 hyperelliptic curves shows that
the proposed method can compute the Hasse-Witt ma-
trix about 1.5 to 2.2 times faster than the previous
method. The result for genus 3 hyperelliptic curves
shows that the proposed method can compute the Hasse-
Witt matrix about 1.6 to 2.0 times faster than the pre-
vious method. These results show that the proposed
method more efficiently compute the Hasse-Witt matri-
ces than the previous method.

However, the ratios of the proposed method to the
previous method in the results are smaller than the es-
timations in Section 3.2. One of the reasons for the dif-
ference is that the cost of multiplications in Z/pj

Z is
strongly affected by word operations rather than bit op-
erations, because the bit length of p is less than the size
of a word on the CPU so that a multiplication in Z/pj

Z

is executed in a few words for 1 ≤ j ≤ 3.

5. Conclusion

This paper proposes improvements in the computa-
tion of the Hasse-Witt matrix of a hyperelliptic curve
using a linear recurrence. The proposed method uses
the reversal of a polynomial in order to reduce the pre-
cision of the p-adic integers for computing the Hasse-
Witt matrix, so that the proposed method can speed
up the computation of the Hasse-Witt matrix. The ex-
perimental results show that the proposed method can
compute the Hasse-Witt matrices of hyperelliptic curves
of genus 2 about 1.5 to 2.2 times faster than the previous
method [3] and the proposed method can compute the
Hasse-Witt matrices of hyperelliptic curves of genus 3
about 1.6 to 2.0 times faster than the previous method.
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