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Abstract

In this paper, we design a mixed double-multiple precision version of the hyperplane con-
strained method for singular value decomposition (SVD), which is based on solving nonlinear
systems with the solutions constrained on hyperplanes. We also propose its hybrid method in
order to shorten the running time. Through some numerical examples for matrices with small
singular values, it is shown that, by new versions, the SVD is computable with high relative
accuracy.
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1. Introduction

The singular value decomposition (SVD) of a rectan-
gular matrix A ∈ R

m×n with m ≤ n is defined as

A = UΣV T , Σ = (diag(σ1, σ2, . . . , σm)Om,n−m),

U = (u1 u2 · · · um), V = (v1 v2 · · · vn),

where σk are positive, and U, V are orthogonal square
matrices. We call σk, uk and vk the singular value, the
left singular vector and the right singular vector, re-
spectively. The pairs (σk, uk, vk) for k = 1, 2, . . . , m are
called singular pairs for simplicity.

In [1], a numerical SVD method named the hyperplane
constrained method is proposed. This method generates
the SVD of given matrix by solving the nonlinear sys-
tems whose solutions are constrained on hyperplanes.
In [2,3], we show the convergence of the hyperplane con-
strained method. In [4], we demonstrate that the com-
puted SVD is highly accurate in terms of residual error.
We also propose the hybrid method of the hyperplane
constrained method and other fast SVD method in or-
der to shorten the running time. The purpose of this
paper is to propose the mixed double-multiple precision
versions of the hyperplane constrained method and its
hybrid method for getting more accurate SVD of matrix,
which is given with double precision format.

In Section 2, we first explain the original version of
the hyperplane constrained method. By numerical ex-
amples, it is shown that the computed singular values by
the original version are highly accurate in terms of abso-
lute error. In double precision arithmetic, however, it is
expected that the computed singular values are not al-
ways with high relative accuracy. In Section 3, we design

a mixed precision version of the hyperplane constrained
method. Some numerical examples are also shown. In
Section 4, we propose a mixed precision version of the
hybrid method, which is combining the hyperplane con-
strained method with other fast SVD method. Through
numerical examples, it is observed that, in mixed preci-
sion arithmetic, the hybrid method runs faster than the
hyperplane constrained method with keeping the accu-
racy. In Section 5, we conclude this paper.

2. Hyperplane constrained method

We start from introducing the original hyperplane
constrained method for SVD proposed in [1, 2, 4].

The original version employs the Newton type itera-
tion for solving the nonlinear system with arbitrary pa-
rameters C ∈ R\{0} and z ∈ R

m,

H(u, v) = 0, (1)

where

H(u, v) =

(

Av − σ(v)u
AT

u − σ(v)v

)

,

σ(v) =
w

T
v

C
, w = AT

z. (2)

Here, the solution of (1) becomes (u, v) = (αkuk, αkvk)
with αk = C/(z, uk). And then σ(αkvk) becomes the
singular value of A. Note that αkuk lies on the hyper-
plane Γ = {u | (z, u) = C}. One of the singular pairs is
then given by the following Newton type iteration.

1. function (σ, u, v, ℓ) = hppair(A, z, ũ, ṽ, C, ℓmax)
2. w := AT

z

3. α := C/(zT
ũ); u := αũ; v := αṽ
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4. σ := w
T
v/C

5. ℓ := 0
6. while (ℓ ≤ ℓmax) do

7. H :=

(

Av − σu

AT
u − σv

)

8. J :=

(

−σIm A − uw
T C−1

AT −σIn − vw
T C−1

)

9. e := J−1
H

10.

(

u

v

)

:=

(

u

v

)

− e

11. α := C/(zT
u); u := αu; v := αv

12. σ := w
T
v/C

13. if (‖e‖∞ < 2−46‖u‖∞) then break; end if

14. ℓ := ℓ + 1
15. end while

16. u := u/‖u‖2; v := v/‖v‖2; σ := u
T (Av)

17. if (σ < 0) then σ := −σ; v := −v; end if

Moreover, using hppair with suitable z, all singular
pairs are computed as follows.

1. function (Σ, U, V ) = hpsvd(A)
2. C := 1; ℓmax := 30
3. for k = 1, 2, . . . , m do

4. z := select(U⊥

k−1)

5. ũ := select(U⊥

k−1); ṽ := select(V⊥

k−1)
6. (σk, uk, vk, ℓ) := hppair(A, z, ũ, ṽ, C, ℓmax)
7. if (ℓ > ℓmax) then

8. uk :=gs(uk,Uk−1); vk :=gs(vk,Vk−1)
9. σk := u

T
k (Avk)

10. end if

11. end for

12. (vm+1, vm+2, . . . , vn) := kernel(Vm)
13. Σ := (diag(σ1, σ2, . . . , σm)Om,n−m)
14. U := (u1 u2 · · · um); V := (v1 v2 · · · vn)

Let Uk = span(u1, u2, . . . , uk), Vk = span(v1, v2, . . . ,
vk). The functions select(U⊥

k−1) and select(V⊥

k−1)
generate the vectors, which are randomly selected from
the orthogonal complements of Uk−1 and Vk−1 with the
help of the Gram-Schmidt process, respectively. The
functions gs(uk,Uk−1) and gs(vk,Vk−1) orthonormalize
uk and vk to {u1, u2, . . . , uk−1} and {v1, v2, . . . , vk−1}
by the Gram-Schmidt process, respectively. The func-
tion kernel(Vm) returns the orthonormal basis of the
orthogonal complement of Vm. It is proved in [2] that the
iteration from the 6th line to the 15th line in hppair has
quadratic convergence and the SVD of A is computable
by hpsvd.

We next show some numerical examples for hpsvd. We
here prepare the test matrices A1 and A2 with double
precision as Ai = U(Si Om,n−m)V T , where

S1 = diag

(

1, ε +
(m − 2)(1 − ε)

m − 1
, . . . , ε +

1 − ε

m − 1
, ε

)

,

S2 = diag(1, ε1/(m−1), . . . , ε(m−2)/(m−1), ε),

and the orthogonal matrices U ∈ R
m×m, V ∈ R

n×n

are randomly given. Let us set m = 50, n = 100 and
ε = 10−13. Then the condition number, namely, the ratio
of the maximal singular value to the minimal one, for Ai

becomes 1013. With respect to the numerical error, we
compare our hpsvd and the routine dgesvd in LAPACK

[5]. Let EH be the residual error defined as

EH =

∥

∥

∥

∥

(

Av − σu

AT
u − σv

)∥

∥

∥

∥

∞

.

Moreover, let Eσ and Er
σ be the absolute error and

the relative error of computed singular value σ, namely,
Eσ = |σ − σ∗|, Er

σ = |σ − σ∗|/σ∗, where σ∗ denotes
the singular value with double precision format given by
casting the result from performing the hyperplane con-
strained method in 224-bit precision arithmetic. We use
the multiple precision arithmetic library GMP 4.2.2 [6].
Numerical experiments are carried out on our computer
with CPU: Intel Core i7 3.20GHz, memory: 3GB, OS:
Linux kernel 2.6.26, compiler: gcc 4.3.2 and LAPACK
3.2.1.

Figs. 1-(a) and 2-(a) show the residual errors EH . In
dgesvd, the largest EH for A1 and A2 become 2−49.
While, in hpsvd, all EH for both matrices are smaller
than 2−51. Figs. 1-(b) and 2-(b) give the graphs of Eσ.
Though in dgesvd maxEσ = 2−49 for A1 and maxEσ =
2−51 for A2, in hpsvd max Eσ = 2−53 for both matrices.
It is remarkable that all singular values computed by
hpsvd have 52-bit accuracy in terms of absolute error.

Figs. 1-(c) and 2-(c) show the graphs of Er
σ. We ob-

serve that, in hpsvd, the relative error of the computed
small singular value is no small in spite of the fact that
EH and Eσ are small. Let us recall that both matri-
ces have no small condition number. In double precision
arithmetic, it seems to be not easy to compute the singu-
lar values of such matrices with 53-bit relative accuracy.

3. Mixed precision version

In this section, we propose a mixed precision version
of the hyperplane constrained method for SVD. The key
point is not to fix the precision of arithmetic, but to
switch between double and multiple ones skillfully. The
mixed precision version of hppair is as follows.

1. function (σ,u,v) = hppair mix *(A,z,ũ,ṽ,C,ℓmax)
2. Ā := mp(A); z̄ := mp(z); C̄ := mp(C)
3. w̄ := ĀT

z̄; w := double(w̄)
4. ū := mp(ũ); v̄ := mp(ṽ)
5. ᾱ := C̄/(z̄T

ū); ū := ᾱū; v̄ := ᾱv̄

6. u := double(ū); v := double(v̄)
7. σ̄ := w̄

T
v̄/C̄; σ := double(σ̄)

8. ℓ := 0
9. while (ℓ ≤ ℓmax) do

10. H̄ :=

(

Āv̄ − σ̄ū

ĀT
ū − σ̄v̄

)

; H := double(H̄)

11. J :=

(

−σIm A − uw
T C−1

AT −σIn − vw
T C−1

)

12. e := J−1
H ; ē := mp(e)

13.

(

ū

v̄

)

:=

(

ū

v̄

)

− ē

14. ᾱ := C̄/(z̄T
ū); ū := ᾱū; v̄ := ᾱv̄

15. u := double(ū); v := double(v̄)
16. σ̄ := w̄

T
v̄/C̄; σ := double(σ̄)

17. EH := ‖H‖∞/‖u‖∞
18. if (‖e‖∞ < 2−53‖u‖∞) then break; end if

19. ℓ := ℓ + 1
20. end while
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21. u := u/‖u‖2; v := v/‖v‖2

22. if (σ < 0) then σ := −σ; v := −v; end if

Here, the variables with bar and without bar are stored
as multiple and double precision floating point number,
respectively. By the function mp, double precision num-
ber is cast into multiple one. While, by the function
double, multiple precision number is reduced to double
one. Of course, by double, some bits of multiple pre-
cision number are eliminated. The input and output of
hppair mix * are with double precision. In this paper,
we discuss two cases where the significand of multiple
precision number are 64 bits and 96 bits. As the multiple
precision arithmetic, hppair mix 64 and hppair mix 96

employ 64-bit precision arithmetic and 96-bit one, re-
spectively.

The vector H is computed with multiple precision,
and then reduced to the double precision format. It
takes O((m+n)3) operations for computing e such that
e = J−1

H. This process, which is the dominant part of
hppair, is carried out with double precision. The com-
puted e is cast to the multiple precision format, and then
ū and v̄ are updated as multiple precision vectors.

By replacing hppair with hppair mix * in hpsvd, we
have the following routine.

1. function (Σ, U, V )=hpsvd mix *(A)
2. C := 1; ℓmax := 30
3. for k = 1, 2, . . . , m do

4. z := select(U⊥

k−1)

5. ũ := select(U⊥

k−1); ṽ := select(V⊥

k−1)
6. (σk, uk, vk) := hppair mix *(A, z, ũ, ṽ, C, ℓmax)
7. end for

8. (vm+1, vm+2, . . . , vn) := kernel(Vm)
9. Σ := (diag(σ1, σ2, . . . , σm)Om,n−m)

10. U := (u1 u2 · · · um); V := (v1 v2 · · · vn)

It is emphasized here that hpsvd mix * requires multiple
precision arithmetic in only hppair mix *. Let us recall
that hpsvd equips with the additional process for orthog-
onalizing computed singular vectors in order to improve
the accuracy of them. The routine hpsvd mix * differs
from the original hpsvd in which it does not employ the
orthogonalization process.

Let Eu = ‖u − u
∗‖∞/‖u∗‖2 and Ev = ‖v − v

∗‖∞
/‖v∗‖2 be the relative errors of computed singular vec-
tors u and v, respectively. Similar to σ∗ in Section 2, we
compute u

∗ and v
∗ with the help of 224-bit precision

arithmetic. With respect to Er
σ, Eu and Ev, we com-

pare the mixed precision hpsvd mix * with the original
hpsvd, LAPACK routine dgesvd and the routine iisvd

in [4] based on inverse iteration method.
Figs. 1-(c) and 2-(c) illustrate the graphs of the rel-

ative error Er
σ. In hpsvd mix 64, some of computed Er

σ

for A2 are larger than 2−53. In hpsvd mix 96, all Er
σ

for both A1 and A2 become less than 2−53. Figs. 1-(d),
2-(d) and 1-(e), 2-(e) show the errors Eu and Ev, respec-
tively. In hpsvd mix 64, some Eu for A2 and some Ev

for A1, A2 are larger than 2−53. In hpsvd mix 96, all Eu

and Ev for A1 and A2 are smaller than 2−53. It is con-
cluded that all singular pairs computed by hpsvd mix 96

have 53-bit accuracy. In hpsvd, dgesvd and iisvd, the

most of Eu and Ev for A1 and A2 are larger than 2−53.

4. Mixed precision hybrid version

In [4], the hybrid method is designed by combining
the hyperplane constrained method with other fast SVD
method. Based on the routine of the hybrid method, we
give the following routine as its mixed precision version.

1. function (Σ, U, V )=hybridsvd mix *(A)
2. C := 1; ℓmax := 20
3. (σ1, . . . , σm, u1, . . . , um, v1, . . . , vm) := fast svd(A)
4. for k = 1, 2, . . . , m do

5. z := select(U⊥

k−1)
6. (σk, uk, vk) := hppair mix *(A, z, uk, vk, C, ℓmax)
7. end for

8. (vm+1, vm+2, . . . , vn) := kernel(Vm)
9. Σ := (diag(σ1, σ2, . . . , σm)Om,n−m)

10. U := (u1 u2 · · · um); V := (v1 v2 · · · vn)

Here the original hybrid routine hybridsvd shown in
[4] is given by replacing hppair mix * with hppair in
hybridsvd mix *. The routine hybridsvd mix * begins
to solve the SVD roughly by a fast SVD routine. In
this paper, we adopt the LAPACK routine dgesvd as
fast svd. The computed singular pairs by fast svd are
used as the initial guesses of hppair mix *. The func-
tion hppair mix * allows us to improve the accuracy of
the computed singular pairs by fast svd. The approx-
imate singular vectors by fast svd also play a key role
for reducing the number of iterations from the 9th line to
the 20th line in hppair mix *. Similar to hpsvd mix *,
the mixed precision hybrid version hybridsvd mix *

does not require multiple precision arithmetic except for
hppair mix *.

From Figs. 1-(c), 1-(f), 2-(c) and 2-(f), it turns
out that the graphs of Er

σ in hybridsvd mix 64 and
hybridsvd mix 96 are almost the same as those of
hpsvd mix 64 and hpsvd mix 96, respectively. Also, the
graphs of Eu and Ev in hybridsvd mix * become sim-
ilar to those of hpsvd mix *. Table 1 shows the average
number of iterations, for computing 50 singular pairs,
from the 9th line to the 20th line in hppair mix * and
the running time. The iteration number and the run-
ning time of hybridsvd mix 96 for both matrices are
less than those of hpsvd mix 96. It is concluded that
hybridsvd mix 96 is a speed-up version derived from
hpsvd mix 96 without changing the accuracy virtually.

5. Conclusion

In this paper, the mixed double-multiple precision ver-
sion of the hyperplane constrained method and its hy-
brid method are proposed. Numerically, it is observed
that the SVD computed by new versions are relatively
exact in double precision.

References

[1] K. Kondo, S. Sugimoto and M. Iwasaki, An SVD algorithm
based on solving nonlinear systems (in Japanese), Trans.

JSIAM, 19 (2009), 81–103.
[2] K. Yadani, K. Kondo and M. Iwasaki, A singular value decom-

position algorithm based on solving hyperplane constrained
nonlinear systems, Appl.Math.Comput., 216 (2010), 779–790.

– 27 –



JSIAM Letters Vol. 2 (2010) pp.25–28 Kenichi Yadani et al.

0 0.2 0.4 0.6 0.8 1

2
-60

2
-50

2
-70

2
-80

2
-90

2
-100

2
-110

2
-120

0 0.2 0.4 0.6 0.8 1

2
-60

2
-55

2
-50

2
-65

0 0.2 0.4 0.6 0.8 1

2
-50

2
-40

2
-30

2
-20

2
-10

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

2
-50

2
-40

2
-30

2
-20

2
-10

0 0.2 0.4 0.6 0.8 1

2
-50

2
-40

2
-30

2
-20

2
-10

0 0.2 0.4 0.6 0.8 1

2
-50

2
-40

2
-30

2
-20

2
-10

(d) (e) (f)

Fig. 1. Graphs of singular values (horizontal axis) and the values of EH in (a), Eσ in (b), Er
σ

in (c) and (f), Eu in (d) and Ev in
(e) (vertical axis with logarithmic scale) for the SVD of A1. ×: dgesvd, +: iisvd, △: hpsvd, �: hpsvd mix 64, ©: hpsvd mix 96, :
hybridsvd, : hybridsvd mix 64, : hybridsvd mix 96.

10
-12

10
0

10
-9

10
-6

10
-3

2
-60

2
-50

2
-70

2
-80

2
-90

2
-100

2
-110

2
-120

10
-12

10
0

10
-9

10
-6

10
-3

2
-60

2
-55

2
-50

2
-65

10
-12

10
0

10
-9

10
-6

10
-3

2
-50

2
-40

2
-30

2
-20

2
-10

(a) (b) (c)

10
-12

10
0

10
-9

10
-6

10
-3

2
-50

2
-40

2
-30

2
-20

2
-10

10
-12

10
0

10
-9

10
-6

10
-3

2
-50

2
-40

2
-30

2
-20

2
-10

10
-12

10
0

10
-9

10
-6

10
-3

2
-50

2
-40

2
-30

2
-20

2
-10

(d) (e) (f)

Fig. 2. Graphs of singular values (horizontal axis with logarithmic scale) and the values of EH in (a), Eσ in (b), Er
σ

in (c) and (f),
Eu in (d) and Ev in (e) (vertical axis with logarithmic scale) for the SVD of A2. ×: dgesvd, +: iisvd, △: hpsvd, �: hpsvd mix 64,
©: hpsvd mix 96, : hybridsvd, : hybridsvd mix 64, : hybridsvd mix 96.

[3] K. Yadani, K. Kondo and M. Iwasaki, On the convergence of
the V-type hyperplane constrained method for singular value
decomposition, JSIAM Letters, 2 (2010), 21–24.

[4] K. Yadani, K. Kondo and M. Iwasaki, Numerical performance
of hyperplane constrained method and its hybrid method for
singular value decomposition, submitted.

[5] LAPACK, http://www.netlib.org/lapack/.
[6] GMP, http://gmplib.org/.

Table 1. The average of iteration number ℓ and running time t

(in seconds).

A1 A2

ℓ t ℓ t

dgesvd – 0.02 – 0.01

hpsvd 10.54 4.12 26.28 11.35

hpsvd mix 64 10.36 5.19 12.76 7.03

hpsvd mix 96 10.14 5.14 11.68 6.26

hybridsvd 2.30 1.08 0.10 0.09

hybridsvd mix 64 2.38 1.48 5.52 3.07

hybridsvd mix 96 2.06 1.29 2.54 1.61
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