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Abstract

It is required to invent the public-key cryptosystem (PKC) that is based on an NP -hard
problem so that the quantum computer might be realized. The knapsack PKC is based on
the subset sum problem which is NP -hard. In this paper, we propose a knapsack PKC with a
cyclic code over GF (2) using the Chinese remainder theorem. The proposed scheme is secure
against Shamir’s attack and Adleman’s attack and invulnerable to the low-density attack.
Furthermore, the proposed scheme can reduce the size of public key by almost 25% ∼ 50% of
the conventional scheme using a linear code.
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1. Introduction

It was shown that the quantum computer can solve
the factoring problem, the discrete logarithm problem
and the elliptic curve discrete logarithm problem in a
polynomial time [1]. However, it is considered that even
the quantum computer can not solve NP -hard problems
in a polynomial time. Thus, it is required to invent the
public-key cryptosystem (PKC) that is based on an NP -
hard problem so that the quantum computer might be
realized. The subset sum problem is one of the NP -hard
problems.

The subset sum problem is to find the solution (x1, x2,
. . . , xn) ∈ {0, 1}n such that

C = a1x1 + a2x2 + · · ·+ anxn

for the given positive integers a1, a2, . . . , an and the
given sum C. The public-key cryptosystem using the
subset sum problem has been conventionally called the
knapsack cryptosystem. The knapsack cryptosystem has
a remarkable feature that the encryption can be per-
formed very fast.

The first knapsack PKC was proposed by Merkle and
Hellman [2]. However, the secret key can be disclosed
by Shamir’s attack [3] or Adleman’s attack [4] because
the public key is generated with a linear transformation
of a super-increasing sequence. The plaintext message
can be also disclosed with the low-destiny attack (LDA)
[5, 6] because the density is not sufficiently high. These
attacks have given the impression that knapsack PKCs
are insecure. It is, however, difficult to condemn that all
the knapsack PKCs are not secure.

In LDA, the subset sum problem is converted into the

problem of finding the shortest vector in a lattice. LDA
was proposed by Lagarias and Odlyzko for solving the
subset sum problem of low density [5]. The density, an
important parameter in knapsack schemes, is defined by

d =
n

log2[max(a1, a2, . . . , an)]
.

Coster et al. improved LDA so that it can solve almost all
subset sum problems of the density less than 0.9408 [6].
Nguyen and Stern proposed an adapting density attack
for low-weight knapsack PKCs [7], which will be referred
to as the low-weight attack (LWA). They showed that
LWA could solve the subset sum problem with high prob-
ability when Hamming weight is low.

Murakami and Nasako proposed the knapsack PKC
with the Chinese remainder theorem (CRT) [8]. The
knapsack PKC with CRT can avoid Shamir’s attack
and Adleman’s attack. However, the knapsack PKC with
CRT needs a large dimension n for realizing the density
invulnerable to LDA. They also proposed the method of
encoding the plaintext before encryption with a linear
code in order to realize a high density above 1 [9]. How-
ever, the size of public key is significantly large when
using a linear code as the encoding.

In this paper, we shall propose a knapsack PKC using
CRT which uses a cyclic code over GF (2) as the en-
coding. The proposed scheme is secure against Shamir’s
attack and Adleman’s attack and invulnerable to LDA.
The proposed scheme has an advantage that the size of
the public key can be made much smaller than the con-
ventional scheme using a linear code.
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Fig. 1. Trapdoor of the proposed scheme.

2. Proposed scheme

In this section, we shall propose a knapsack PKC us-
ing a cyclic code over GF (2) with CRT. The proposed
scheme adopts the trapdoor sequence proposed in [10],
but not limited.

The keys of the proposed knapsack PKC are the fol-
lowings:� �

Public key PK : PK = {a, G(x)}.
Secret key SK :

SK = {s(P ), s(Q), s, P,Q, σ, TP , TQ}.
� �
2.1 Key generation

Bob creates a public key PK and a corresponding se-
cret key SK by doing the following:

Algorithm K

(1) Decide the dimensions n and u such that n > u.

(2) Define the sets TP and TQ such that TP ∪ TQ =
{1, 2, . . . , u} and TP ∩ TQ = φ.

(3) For i = n downto u + 1 do:

Generate r-bit random positive integers s
(P )
i and

s
(Q)
i .

(4) For i = u downto 1 do:

Generate random positive integers s
(P )
i and s

(Q)
i

such that





s
(P )
i >

n∑

k=i+1

s
(P )
k , if i ∈ TP ,

s
(P )
i < s

(P )
i+1, otherwise,






s
(Q)
i >

n∑

k=i+1

s
(Q)
k , if i ∈ TQ,

s
(Q)
i < s

(Q)
i+1, otherwise.

(5) Choose integers P and Q such that





P >
n∑

k=1

s
(P )
k ,

Q >
n∑

k=1

s
(Q)
k ,

and gcd(P,Q) = 1.

(6) Compute s = (s1, s2, . . . , sn) ∈ Z
n
PQ such that

si ≡
{

s
(P )
i (mod P ),

s
(Q)
i (mod Q),

for i = 1 to n with CRT.

(7) Generate a polynomial F (x) of period n over
GF (2).

(8) Generate a polynomial G(x) = g0 + g1x + g2x
2 +

· · ·+ gn−1x
n−1 of degree n− 1 such that F (x)|G(x)

over GF (2).

(9) Let Sn denote the set of permutations of integers
{1, 2, . . . , n}. Let the generator matrix G be

G = [ξ1 | ξ2 | · · · | ξn]

=




g0 g1 g2 . . . gn−1

gn−1 g0 g1 . . . gn−2

gn−2 gn−1 g0 . . . gn−3

...
...

...
...

gn−u+1 gn−u+2 gn−u+3 . . . gn−u




.

Select a random permutation σ ∈ Sn such that
det(Ĝ) 6= 0 over GF (2) where Ĝ = [ξσ(1) | ξσ(2) |
· · · | ξσ(u)].

(10) Obtain a = (a1, a2, . . . , an) ∈ Z
n
PQ such that

ai = sσ(i).

for i = 1 to n with the permutation σ.

(11) Publicize the public key {a, G(x)} and the public
information on the dimension {u, n}.

Fig. 1 illustrates the trapdoor of the proposed scheme.
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2.2 Encryption

Alice encrypts a message m = (m1,m2, . . . ,mu) ∈
{0, 1}u into the ciphertext C ∈ Z by doing the following:

Algorithm E

(1) Encode the message m into m′ = (m′

1,m
′

2, . . . ,m
′

n)
∈ {0, 1}n as follows:

M ′(x) = M(x)G(x) mod (xn − 1)

where M(x) = m1 + m2x + · · · + muxu−1 and
M ′(x) = m′

1 + m′

2x + · · ·+ m′

nxn−1 are polynomial
representations of m and m′ over GF (2), respec-
tively. It should be noted that m′ is a codeword of
the cyclic code generated by F (x).

(2) Compute the ciphertext C ∈ Z as follows:

C =

n∑

i=1

aim
′

i.

(3) Send the ciphertext C to Bob.

2.3 Decryption

Bob decrypts the message m = (m1,m2, . . . ,mu) ∈
{0, 1}u from the ciphertext C ∈ Z by doing the following:

Algorithm D

(1) Compute CP ∈ ZP and CQ ∈ ZQ as follows:
{

CP = C mod P,

CQ = C mod Q.

(2) For i = 1 to u do:
If i ∈ TP {

m̂i =

{
0 if CP < s

(P )
i ,

1 if CP ≥ s
(P )
i ,

} Else {

m̂i =

{
0 if CQ < s

(Q)
i ,

1 if CQ ≥ s
(Q)
i ,

}
CP ← CP − m̂is

(P )
i ,

CQ ← CQ − m̂is
(Q)
i ,

where m̂ = (m̂1, m̂2, . . . , m̂u) ∈ {0, 1}u.

(3) Obtain the message m as follows:

m = m̂Ĝ−1 mod 2.

3. Discussions

3.1 Security of secret key

Several attacks of computing the secret key from the
public key are proposed on the knapsack PKC such as
Shamir’s attack [3] and Adleman’s attack [4]. These at-
tacks are effective only when the public key is generated
with a modular multiplication of a super-increasing se-
quence. However, the proposed scheme uses CRT instead
of the modular multiplication in order to generate the
public key from the secret key. Thus, these attacks are
not applicable to the proposed scheme.

3.2 Security against exhaustive search

The exhaustive search is an attack by searching plain-
text at all possibilities. It requires a great investment of
time to search for 80 bits even by the latest computers.
Thus, it is required that u ≥ 80 in order to be secure
against the exhaustive search.

3.3 Security against space-time tradeoff attack

In general, the computation time can be reduced by
increasing the memory use. This type of attacks is called
the space-time tradeoff attack. We can reasonably as-
sume that the time complexity of O(N) can be divided
into the time complexity of O(

√
N) and the space com-

plexity of O(
√

N). Thus, it is required that n ≥ 160 in
order to be secure against the space-time tradeoff attack.

3.4 Security against low-density attack

3.4.1 Density of proposed scheme

LDA works effectively for a low-density knapsack
PKC, irrespective of the trapdoors. This attack converts
the subset sum problem into the problem of finding a
short vector in a lattice. LDA proposed by Coster et al.
can solve the almost all subset sum problems when the
density is less than 0.9408 [6].

The density d of the proposed knapsack scheme is
given by

d ≃ n

log2 PQ
.

For simplicity, we assume that u = 2u′, TP = {1, 3,
. . . , 2u′ − 1} and TQ = {2, 4, . . . , 2u′}. Then, we can
estimate that log2 P ≃ log2 Q ≃ r + u/2 + log2(n − u)
and we have

log2 PQ ≃ 2r + u + 2 log2(n− u). (1)

Therefore the density d can be estimated by

d ≃ n

2r + u + 2 log2(n− u)
.

For example, d > 1 can be achieved when r = 40,
u = 80, n = 173. Therefore, the proposed scheme is in-
vulnerable to LDA because a high density above 1 can
be realized by encoding the plaintext before encryption.
Thus, we can conclude that the proposed scheme is in-
vulnerable to LDA. We recommend r ≥ 40, u ≥ 80 and
n ≥ 160 in order to realize a high security.

3.4.2 Effect of encoding

In the proposed scheme, the m′ can be represented as

m′ = mG over GF (2). (2)

If m′ can be represented as

m′ = mG over Z, (3)

then C can be represented by

C =
u∑

i=1

a′

imi, (4)

where we let the u-dimensional integer vector a′ be a′ =
aGT over Z. Indeed, there are several cases that (3)
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holds. For example, (3) holds when the generator matrix
G is sparse such as G(x) = 1.

The bit-length of each a′

i can be estimated by ⌈log2PQ
+ log2 n⌉[bit] at maximum. Thus, it is seen that the den-
sity d′ of the knapsack a′ can be estimated by

d′ <
u

log2 PQ + log2 n
.

This means that the proposed scheme would not be se-
cure against LDA if (3) holds. However, there are little
cases that (3) holds when G is not sparse. In order to
let the generator matrix G be non-sparse, we have only
to let the number of terms of G(x) be sufficiently large.
We strongly recommend to let the number of terms of
G(x) be approximately n/2. In this case, the number of
non-zero elements of G can be estimated as un/2 which
is sufficiently large. Thus, we can conclude that it is dif-
ficult to convert the proposed scheme into a subset sum
problem of low density.

3.5 Security against low-weight attack

The pseudo-density κ is defined by

κ =
k log2 n

log2[max(a1, a2, . . . , an)]

where k is Hamming weight of the encoded message m′.
LWA can solve a subset sum problem with high proba-
bility when the pseudo-density κ is lower than 1 even if
the density d is higher than 1 [7].

Let the number of terms of G(x) be n/2 which is rec-
ommended value. Assuming that the plaintext message
m be randomly generated, Hamming weight of m′ can
be estimated as k = n/2. In this case, it is seen that
κ = d log2 n/2 > d > 1 can be realized. Consequently,
we can conclude that the proposed scheme is invulnera-
ble to LWA.

3.6 Size of public key

Let the function I() return the total amount of data
in parenthesis. From (1), the amount of the public key
a, I(a), can be estimated by

I(a) = n[2r + u + 2 log2(n− u)].

In the proposed scheme, the size required for rep-
resenting G(x) is only I(G(x)) = n. Thus, the total
amount of the public key in the proposed scheme can
be estimated as

I (a, G(x)) = n[2r + u + 1 + 2 log2(n− u)].

On the other hand, in the conventional scheme which
uses a linear code as the encoding, I(G) = un is required
for representing G. Thus, the total amount of the public
key in the conventional scheme can be estimated as

I(a, G) = n[2r + 2u + 2 log2(n− u)].

The ratio of I(a, G(x)) to I(a, G) can be estimated as

I (a, G(x))

I(a, G)
≃ 2r + u

2r + 2u

when n and u are sufficiently large. Since we usually let
the parameter u be 0 < r < u, it is seen that the pro-

posed scheme can reduce the size of public key by almost
25% ∼ 50% of the conventional scheme. For example,
the proposed scheme can reduce the size of public key
by almost 30% when r = 40, u = 80 and n = 255. We
can conclude that the size of public key in the proposed
scheme is sufficiently practical.

4. Conclusion

In this paper, we have proposed a knapsack PKC with
a cyclic code over GF (2) which uses CRT as the trap-
door. The proposed scheme is secure against Shamir’s at-
tack and Adleman’s attack which are the attack of com-
puting the secret key. Moreover, the proposed scheme is
invulnerable to both LDA and LWA because it can re-
alize a high density above 1 and a high pseudo-density
above 1. Furthermore, the proposed scheme can reduce
the size of public key by almost 25% ∼ 50% of the con-
ventional scheme using a linear code.
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