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Abstract

We present an approach to preconditioning for large, relatively dense linear systems and verify
the validity of our method. We restrict the target of our method to Molecular Orbital (MO)
calculations. Sparse Approximate Inverse (SAI) is typically less effective at accelerating the
convergence and requires a huge computational cost in its construction when a large number
of nonzero entries are kept in the approximate inverse matrix. We explain a construction of
Block SAI and a cutoff strategy to reduce the number of nonzero elements, and investigate
the efficiency of a cutoff strategy and Block SAI.
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1. Introduction

Density Function Theory (DFT) is a popular method
to obtain the potential energy of materials in atomistic
scales, and typically involves a solution of large scale
eigenvalue problems. In particular for the area of protein
folding, we have developed a task-parallel scheme for
the eigenvalue problems [1] that achieves a substantial
parallel speedup. Yet, our scheme requires each CPU (or
a group of CPUs) to solve the solutions of large linear
systems

Ax = b,

where A ∈ C
n×n contains relatively large number of

nonzero elements (semi-sparse). We have observed that
these linear systems are typically derived from Molecular
Orbital (MO) calculations.

For the solution of such linear systems on multi-core
CPUs, Krylov subspace methods preconditioned with
sparse approximate inverse (SAI) based on Frobenius
norm minimization appear very attractive because of the
good parallel efficiency in both preconditioner construc-
tion and application. However, the convergence of the
iterative solvers with SAI tends to be slower than those
with the conventional preconditioning methods such as
incomplete factors. This is because the SAI precondi-
tioner often falls into local minimization with respect to
individual columns. In addition to this drawback, the
arithmetic costs of constructing the SAI preconditioner
grows cubically with the number of nonzero entries per
row, making it less feasible than other preconditioning
alternatives.

In this paper, we attempt to overcome these perfor-
mance bottlenecks of SAI using a blocked version of
Frobenius norm minimization in order to mitigate the
side effect of the minimization process applied to individ-
ual columns of the approximate inverse. We also apply
different drop-threshold schemes to achieve a reduction
of the arithmetic costs of preconditioner construction
and application at the cost of a small increase in the
iteration counts.

This paper is organized as following. In Section 2, the
SAI preconditioner and its block variant are described.
We discuss our preconditioner for the semi-sparse linear
systems in Section 3. In Section 4, we describe how to
profile for a cutoff parameter. In Section 5, we investigate
the performance of our preconditioner through the nu-
merical experiments with two matrices obtained from
the computation of molecular orbital, followed by the
concluding remarks in Section 6.

2. SAI and its block variant

Our approach to constructing a preconditioning ma-
trix is based on Frobenius norm minimization [2, 3]:

min
M

‖AM − I‖2

F
, (1)

where I is the identity matrix. The Frobenius norm can
be minimized in parallel:

‖AM − I‖2

F
=

n
∑

k=1

‖Amk − ek‖
2

2
, (2)

where mk and ek are the k-th column of M and I
respectively. Thus, the preconditioning matrix M =
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[m1,m2, · · · ,mn] ≈ A−1 is constructed by solving n
independent least square problems:

min
mk

‖Amk − ek‖
2

2
, k = 1, 2, . . . , n. (3)

The Block SAI preconditioner is proposed by Barnard
and Grote [4, 5] in order to improve the accuracy of
the preconditioning matrix. In the Block SAI precon-
ditioner, problem (1) can be approximated in parallel:

‖AM − I‖2

F
=

L
∑

k=1

‖AMk − Ek‖
2

F
, (4)

where l is a block size, L = ⌈n/l⌉ and Ek is a sub-
matrix of the identity matrix I such that I = [E1,
E2, · · · , EL]. Thus, the preconditioning matrix M =
[M1,M2, · · · ,ML] is constructed by solving L indepen-
dent least square problems:

min
Mk

‖AMk − Ek‖
2

F
, k = 1, 2, . . . , L. (5)

The initial sparsity pattern M0 of the preconditioning
matrix is decided by the following:

spy(A) = spy(M0), (6)

where “spy” denotes the sparsity pattern of a matrix.

3. Block SAI with cutoff (BSAIC)

Molecular orbital calculation of the biochemistry ap-
plication [6] requires to solve the following generalized
eigenvalue problem:

Fν = λSν,

where F ∈ R
n×n is symmetric and S ∈ R

n×n is sym-
metric positive definite. In molecular orbital calcula-
tion, eigenpairs around Highest Occupied Molecular Or-
bital (HOMO) - Lowest Unoccupied Molecular Orbital
(LUMO) are important to analyze the chemical reac-
tions. Thus, interior eigenvalue problems are required to
solve. For instance, the inverse of the shifted matrix
(F − σS)−1 is required to find some eigenvalues around
σ in some methods. In the Sakurai-Sugiura (SS) method
[1], the solution of the system of linear equations Ax = b,
where the coefficient matrix A is given by

A = ωS − F,

is required. Since F is semi-sparse, A is also semi-sparse.
Firstly, we describe why the sparsity pattern of A is

used as the initial sparsity pattern of M0. The nonzero
pattern of A−1 is changed depending on ω. When the
sparsity pattern of A is similar to that of A−1, Ax = b

is relatively easy to solve. Meanwhile, when the sparsity
pattern of A is not similar to that of A−1, it is difficult
to solve Ax = b. In practice, the sparsity pattern of A−1

with important ω is relatively similar to that of A, and
thus the sparsity pattern of A can be used as the initial
sparsity pattern of M0.

Secondly, we describe how to reduce the computa-
tional cost of SAI. The coefficient matrix A contains
relatively large number of nonzero elements, and thus
the computational cost of SAI is huge if SAI is applied
to these matrices. For this reason, we propose a cutoff

that is applied to the coefficient matrix A to reduce the
number of nonzero elements. In our cutoff, off-diagonal
nonzero elements of A are dropped if they are small com-
pared to a cutoff parameter θ as shown below:

Ac = [ãij ], ãij =

{

aij , (|aij | > θ or i = j),

0, (otherwise),
(7)

where θ is a nonnegative real value. As a result, the
computational cost of SAI is reduced because of fewer
nonzero elements in A. However, a larger value of θ leads
to a less effective preconditioning matrix with a large
number of iterations, though it reduces the computa-
tional costs of SAI even further.

After applying the cutoff strategy, least square prob-
lems with the approximate matrix Ac:

min
Mk

‖AcMk − Ek‖
2

F
, k = 1, 2, . . . , L (8)

are solved. The matrix M = [M1,M2, · · · ,ML] is em-
ployed as the preconditioning matrix. We call this pre-
conditioner the Block SAI with Cutoff (BSAIC) precon-
ditioner.

We describe the performance improvement of the ap-
proximate inverse obtained by a block version of Frobe-
nius norm minimization. Firstly, the performance degra-
dation of SAI by applying our cutoff can be reduced due
to extra fill-ins introduced by the blocked version. These
fill-ins make the preconditioner more robust and allow
larger value of θ for the cutoff to make it sparser than
the original SAI.

Let the size of the matrix of i-th QR decomposition
of SAI be mi × ni (mi ≥ ni). Its computational cost is
O(min

2

i ). Let the number of nonzero elements of A be
αn2 (0 < α ≤ 1), where n is the dimension of A. In
many cases, mi and ni are proportional to α. Therefore,
the decrease of α provides the drastic decrease of the
computational cost of the QR decomposition. Indeed,
when the matrices derived from the computation of the
molecular orbitals are used, mi and ni are proportional
to α, and the cutoff is effective for the QR decomposi-
tion. Applying the cutoff to A, the number of iterations
increases slowly in certain range of θ.

Secondly, Block SAI increases a scope of minimization
as the original version does it for each column of M .
Computing the minimum associated with a block of col-
umn reduces the threat of local minimization. In other
words, a large l makes M more global minimizer in the
sense of the linear space of A. However, a large l often
increases the cost of the least square problem associated
with each block as the row dimension of the matrix for
each least square problem is determined by the number
of nonzero rows in the block. This performance drawback
can be mitigated with a large cutoff value θ, and our ex-
periments in Section 5 indicates that a large l slows down
the increase of the iteration count with respect to θ.

In conclusion, both the cutoff parameter θ and the
block size l are preferred to be large as much as possible.
However, these values depend on problems, and thus we
take matrices obtained from computation of the molec-
ular orbitals for instance.
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4. Profiling for cutoff parameter tuning

In the SS method, linear systems Ax = b for various
ω which are around HOMO-LUMO need to be solved.
The difficulty of solving Ax = b depends on ω. The con-
structing cost of M are highly dependent on the number
of nonzero elements of A. Therefore, we need to set an
appropriate cutoff parameter depending on ω. How to
profile for a cutoff parameter is shown below:

1) Profiling stage
a. Check the values of matrix elements.
b. Check the constructing time of M with a large cutoff

value.
c. Estimate the constructing times of M with several

cutoff values from the number of nonzero elements
of all matrices of QR decomposition.

d. Set the range of the cutoff parameter µ with µmin ≤
µ ≤ µmax.

2) Trial stage
a. Set µ = µmax.
b. Construct M with the cutoff parameter µ.
c. Perform one cycle of the preconditioned GMRES(k).
d. If ‖b − Axk‖/‖b‖ ≤ δ or µ ≤ µmin then

exit this trial stage.
Else

set µ = βµ (0 < β < 1).
End if

e. Go to 2)-b.

3) Perform the preconditioned GMRES(k) using M con-
structed in 2).

5. Numerical experiments

In this section, the BSAIC preconditioner is compared
with SAI and Block SAI by numerical experiments.
All experiments are carried out by MATLAB 7.4 on
MacBook (CPU: Intel Core 2 Duo 2.0GHz, Memory:
2.0Gbytes, OS: Mac OS 10.5.6). The test problems are
solved by the preconditioned GMRES(30) method [7].
The stopping criterion for the relative residual is 10−10.
The initial guess x0 is set to 0 and all elements of b are
set to 1.

5.1 Example 1

In Example 1, the matrices F and S are derived from
the computation of the molecular orbitals of a model
DNA. The coefficient matrix A is given by ωS−F , where
ω is a real parameter.

The size of A is 1, 980 and the number of nonzero
elements is 728, 080 (18.57%). In this example, the pa-
rameter ω for the coefficient matrix A and the block size
l are set to −0.16 and 30, respectively.

When A−1
c

with small θ is used as a preconditioning
matrix, the number of iterations is very small (e.g., the
number of iterations is 5 with θ = 10−3). The eigen-
value corresponding to HOMO is −0.16538. In molecular
orbital calculations, eigenpairs around HOMO-LUMO
are desired. Therefore, the system of linear equations
Ax = b for several parameters ω which are close to
HOMO need to be solved.

The results of Example 1 are reported in Table 1. The
number of iterations of SAI is 9 and that of Block SAI

(a) spy(A). (b) spy(A−1).

Fig. 1. The sparsity pattern with ω = −0.24.

(a) spy(A). (b) spy(A−1).

Fig. 2. The sparsity pattern with ω = −0.5.

with l = 30 is 7. Block SAI takes less iterations and pre-
conditioning time than those of SAI. SAI with Cutoff
takes less preconditioning time than that of SAI and
Block SAI. BSAIC converges faster than other precon-
ditionings.

5.2 Example 2

In Example 2, the matrices F and S are derived from
the computation of the molecular orbitals of Lysozyme.
In this example, we also use the real parameter ω for the
coefficient matrix A = ωS − F . The matrices F and S
are real symmetric and real symmetric positive definite,
respectively. The size of A is 6, 005 and the number of
nonzero elements is 3, 275, 925 (9.08%). The parameter
ω for coefficient matrix A and the block size l are set to
−0.24 and 30, respectively.

Fig. 1 shows sparsity patterns of A and A−1 with ω =
−0.24, respectively. Fig. 2 shows sparsity patterns of A
and A−1 with ω = −0.5, respectively. The eigenvalue
which corresponds to HOMO is −0.25086.

The results of Example 2 are reported in Table 2. The
number of iterations of SAI is 6 and that of Block SAI
with l = 30 is 5. BSAIC converges faster than other
preconditionings.

Fig. 3 shows the actual preconditioning time and the
estimated time with respect to several cutoff values using
l = 30 for Example 2. One iteration take 0.2 [sec]. When
θ = 10−5 is used, too large comparison with time for one
iteration. Thus, we set the range of cutoff parameter
from 10−1 to 10−4.

The results of our profiling are presented in Table 3.
The threshold δ of relative residual are set to 10−3. To-
tal time denotes the times including profiling, Cutoff,
preconditioning and iteration. An appropriate cutoff pa-
rameter depending on ω is found. When θ = 10−5 is
used, the preconditioning time is 140.92 [sec] without
profiling. Thus, when a small value of θ is used without
profiling, large computational cost is required.

Fig. 4 shows the relative residual of our profiling with
ω = −0.45 for Example 2. Ax = b is solved with variable
θ.
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Table 1. Results for Example 1.

Preconditioner
The number Wall clock time [sec]

of iterations Cutoff Preconditioning Iteration Total

SAI 9 — 474.94 0.24 475.18

Block SAI 7 — 56.85 0.24 57.09

SAI with Cutoff
θ = 10−2 123 0.12 1.15 2.17 3.44

θ = 10−4 21 0.16 16.82 0.50 17.48

BSAIC
θ = 10−2 44 0.12 1.07 0.77 1.96

θ = 10−4 14 0.16 5.46 0.29 5.91

Table 2. Results for Example 2.

Preconditioner
The number Wall clock time [sec]

of iterations Cutoff Preconditioning Iteration Total

SAI 6 — 21197.78 0.80 21198.58

Block SAI 5 — 1760.92 0.64 1761.56

SAI with Cutoff
θ = 10−2 59 0.44 4.00 2.64 7.08

θ = 10−4 13 0.58 75.62 0.45 76.65

BSAIC
θ = 10−2 17 0.44 3.91 0.58 4.93

θ = 10−4 9 0.58 36.54 0.43 37.55

Actual precond. time

Cutoff value θ

Estimated precond. time
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Fig. 3. The actual preconditioning time and the estimated time
with respect to several Cutoff value using l = 30 for Example 2.

6. Conclusions

Our method, BSAIC algorithm, reduces the compu-
tational cost for generating the approximate inverse M ,
and overcomes the performance bottlenecks of SAI using
the blocked version of Frobenius norm minimization and
the cutoff strategy for semi-sparse matrices. Although
our empirical study is confined to the problems from
electronic calculations, we demonstrate that the perfor-
mance of BSAIC substantially better than SAI precondi-
tioning, and the application of cutoff parameters further
increase the performance advantage of BSAIC, making
it robust and efficient preconditioning together. The re-
sults of the empirical study also indicate that some pos-
sibilities of predicting the cost of constructing M and
tuning θ in a small computational overhead.

In future works, we will try to find a better strategy
for selecting an appropriate cutoff parameter tuning and
apply for large scale problems.
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Table 3. Results of our profiling for Example 2.

ω Appropriate θ Total time [sec]
The total number

of iteration

−0.24 10−2 13.36 46

−0.3 10−2 14.32 59

−0.35 10−2 17.16 130

−0.4 10−2 14.54 69

−0.45 10−3 28.82 178

−0.5 10−4 83.53 793

Number of iteration

θ=1e-1
θ=1e-2
θ=1e-3
Threshold δ
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Fig. 4. The relative residual of our profiling with ω = −0.45 for
Example 2.
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