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Abstract

Computational results are presented on micro-hologram diffraction for optical data storage
using a finite element method. Retrieval of object light from a micro-hologram is formulated
as an optical scattering problem in an infinite region. In order to overcome the difficulty of
dealing with the infinite region a Dirichlet to Neumann (DtN) map is employed on an artificial
boundary. By virtue of the DtN map reflection from the artificial boundary is effectively
alleviated and non-reflecting boundary is obtained. Retrieval of the object light is computed
for two different models.
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1. Introduction

Holographic data storage has been studied as a next
generation method for optical data storage with terabyte
capacity. A method using a micro-hologram is one of
such technologies [1, 2], where a micro-hologram is gen-
erated as a set of interference fringes when two counter-
propagating focused laser beams intersect at the focus.
The data that one of the two lights, namely object light,
carries are reconstructed as diffraction from the holo-
gram when the other light called the reference light is
illuminated on the hologram. This process is called re-
trieval of object light; see [3, p. 308] in detail. One of the
main interests of the study is to estimate the diffraction
efficiency in the retrieval process that determines the
signal to noise ratio of the data storage system.

For free space propagation of light where neither free
charge nor current exists, the electric field and the mag-
netic field are decoupled. This reduces the Maxwell equa-
tions to a set of vector-valued Helmholtz equations for
the electric and magnetic fields assuming that the fields
are time harmonic. Furthermore, in the retrieval process,
a laser beam is in general polarized so it suffices to an-
alyze one component of the electric field of light instead
of all components of the Helmholtz equations [4].

As a result, the retrieval process can be described as
an optical scattering problem, which is stated by the
scalar Helmholtz equation in an infinite region. In or-
der to avoid computational difficulty in an infinite re-
gion, several techniques have been developed to trans-
form the original problem into one in a bounded domain.
In the field of optics, there are researches using Bound-
ary Element Method (BEM) [5], hybrid finite element
method with BEM coupling [6], Perfectly Matched Layer

(PML) [7], Transparent Boundary Condition (TBC) [4].
There is another method called Dirichlet to Neumann

(DtN) map [8, 9] that has been used mainly in scatter-
ing problems in acoustics and has not been yet used for
optical scattering problems. The reason may be because
of the large wave number of light making computation
more difficult. To the best of our knowledge, the DtN
map has not yet been used for optical scattering prob-
lems. In this paper, we apply a DtN map to our optical
scattering problem and simulate retrieval of object light
from a micro-hologram.

2. Formulation

Let ΩB be a 2-dimensional transmissive scatterer with
a smooth boundary Γ and an outward unit normal n;
see Fig. 1. We assume the time harmonic field. Let u

be the complex amplitude of a scalar component of the
electric field of scattered light. The scattering problem
is formulated by the following Helmholtz equations in
R

2 according to [4, 10]; for a given domain ΩB , wave
numbers k1 and k2 in medium 1 and 2, and an incident
light uinc, find u : R

2 → C such that
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Fig. 1. A scatterer ΩB and an artificial boundary Γa.

where i denotes the imaginary unit and [ . ] represents a
gap across Γ and r := |x| with the orthogonal coordinate
system x = (x1, x2) in R

2.
The scatterer, incident light and scattered light in the

formulation correspond to the micro-hologram, reference
light and object light, respectively in the retrieval pro-
cess.

Let Ωa be a circle with the radius a (> 0), and let
Γa be the boundary of Ωa; see Fig. 1. Suppose that the
circle Ωa includes ΩB strictly. By introducing DtN map
[8], the problem (1) becomes equivalent to the following
equations in Ωa; find u : Ωa → C such that















































−∆u − k2
2u = (∆ + k2

2)u
inc in ΩB ,

−∆u − k2
1u = 0 in Ωa\ΩB ,

[ u ] = 0 on Γ ,
[

∂u

∂n

]

= 0 on Γ ,

∂u

∂r
= −Su on Γa.

(2)

Here S is the Steklov-Poincaré operator defined by

Su := −k1

∞
∑

n=−∞

H
(1)′
n (k1a)

H
(1)
n (k1a)

un(a)φn(θ),

where (r, θ) is the polar coordinate system in R
2, H

(1)
n

Hankel function of the first kind of order n, φn(θ) the
spherical harmonics defined by

φn(θ) :=
1√
2π

einθ

and un a Fourier coefficient defined by

un(a) :=

∫ 2π

0

u(a, θ)φn(θ) dθ.

The Hankel function and its derivative are defined as
follows:

H(1)
n (x) := Jn(x) + iYn(x),

H(1)
n (x)′ :=

1

2

(

H
(1)
n−1(x) − H

(1)
n+1(x)

)

,

where Jn(x) and Yn(x) are the Bessel function of the
first and second kind of order n, respectively.

Let L2(Ωa) be the space of complex-valued square-

integrable functions defined in Ωa, and let ‖ .‖0,Ωa
be its

norm. For m ∈ N, let Hm(Ω) be the space of functions
in L2(Ωa) with derivatives up to the mth order, and
let ‖ . ‖m,Ωa

be its norm. Set V := H1(Ωa). Moreover,
bilinear forms a and s are defined by

a(u, v) :=

∫

Ωa

(∇u · ∇v − k2u v ) dx, ∀u, v ∈ V,

s(u, v) :=

∫

Γa

(Su) v ds, ∀u, v ∈ V,

and a linear functional f is defined by

〈f, v〉 :=

∫

Ωa

f v dx, ∀v ∈ V.

Here, k is a piecewise constant function defined by

k(x) :=

{

k1 in Ωa\ΩB ,

k2 in ΩB ,

and f is a scattering potential defined by

f(x) :=

{

0 in Ωa\ΩB ,

(∆ + k2
2)u

inc in ΩB .

Note that simple calculations make the bilinear form s

become

s(u, v) = −k1 a

+∞
∑

n=−∞

H
(1)′
n (k1a)

H
(1)
n (k1a)

un vn .

Now, (2) can be written in a weak form as follows: find
u ∈ V such that

a(u, v) + s(u, v) = 〈f, v〉, ∀v ∈ V. (3)

3. Finite element approximation

Let {Th} be a uniformly regular family of triangula-
tion of Ωa, where h stands for the maximum diameter of
the triangles in Th. We set Ωah := int(∪{T ;T ∈ Th}).
By definition, let Vh ⊂ V be the P1 finite element space.
Moreover, the bilinear forms a and s, and the linear func-
tional f are approximated by bilinear forms ah and sN

h ,
and a linear functional fh defined by, for uh, vh ∈ Vh,

ah(uh, vh) :=

∫

Ωah

(∇uh · ∇vh − k2uh vh) dx,

sN
h (uh, vh) := −k1 a

N
∑

n=−N

H
(1)′
n (k1a)

H
(1)
n (k1a)

uhn vhn,

〈fh, vh〉 :=

∫

Ωah

(Πhf) vh dx,

where N is a truncation number and Πhf denotes the
P1 interpolant of f .

Then, a finite element problem corresponding to (3)
is obtained as follows: find uh ∈ Vh such that

ah(uh, vh) + sN
h (uh, vh) = 〈fh, vh〉, ∀vh ∈ Vh. (4)

Remark 1 Let D be a reflective scatterer with smooth

boundary Γ . Instead of the problem in the whole

2-dimensional Euclidean space R
2, we consider the

Helmholtz equation in the exterior region R
2\D. Sup-

pose that the circle Ωa includes D strictly. Then, we can

– 46 –



JSIAM Letters Vol. 2 (2010) pp.45–48 Yosuke Mizuyama et al.

obtain the equivalent formula as follows:














−∆u − k2
1u = f inΩa\D,

u = g on Γ ,

∂u

∂r
= −Su on Γa.

(5)

Under appropriate assumptions, there exists a conver-

gence result for a finite element scheme (5) correspond-

ing to this problem; see [9].

4. Numerical examples

Let u1 and u2 be the complex amplitude of a reference
light and an object light, respectively. An interference
pattern is calculated by the intensity field of the sum
of u1 and u2. The domain for the corresponding scat-
terer, ΩB , is found as the region where the interference
intensity exceeds a given value. We assume a model that
the region suffers index change to n2 from surrounding
index n1 of a holographic material. We thus prepare a
scatterer ΩB prior to the simulation of a scattering prob-
lem. Then simulation is made to compute the scattering
distribution and intensity so as to analyze the retrieval
process.

In scattering problem, we approximate the retrieval
reference light by an incident light with a plane wave,
i.e., uinc ∼ eik1x, whereas u1 and u2 are Gaussian beams.
Then the scattering potential f can be simplified to
(−k2

1 + k2
2) eik1x in ΩB . The complex amplitude of scat-

tered field u is approximated by the conventional con-
forming P1 elements.

Considering that micro-holograms are literally of the
size of microns, which is the same order as the wave-
length of light, we have nondimensionalized the equa-
tions with respect to λ. Throughout these examples, the
refractive indices are n1 = 1.5 and n2 = 1.51. The wave
numbers then become

k1 := 2πn1 ≈ 9.425, k2 := 2πn2 ≈ 9.488.

The Hankel function appearing in the Steklov-
Poincaré operator is calculated by using the built-in
function for the Bessel functions in the compiler. In order
to solve the resultant linear systems, Conjugate Residual
(CR) method was used. The computations were done by
Core 2 Duo 3GHz CPU with 8GB memories.

4.1 Model A

A scatterer ΩB is given by

ΩB = {x ∈ R
2; |u1 + u2|2 ≥ 0.5},

which is a result of interference of two Gaussian beams
that intersect at 90 degrees:

u1(x1, x2) =
1

2

√

xR

q(x1)
exp

(

− ik1x
2
2

2q(x1)

)

exp(ik1x1),

u2(x1, x2) =
1

2

√

xR

q(x2)
exp

(

− ik1x
2
1

2q(x2)

)

exp(−ik1x2),

where xR is a given nondimensionalized Rayleigh range
≈ 4.676. The size of the micro-hologram created by these
beams corresponds to about 0.7µm.

In this example, u1 and u2 represent the reference light

Fig. 2. Model A and its triangulation.
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Fig. 3. The absolute value of scattered waves in Model A.

propagating along x1 direction and the object light along
−x2 axis, respectively to form a micro-hologram, which
is a scatterer in our optical scattering problem. Since we
used Gaussian beams, only the vicinity of the Rayleigh
range has strong field. This is the reason why the scat-
terer consists of only three micro-ellipses around the fo-
cus. The two beams intersecting at 90 degrees made
the micro-hologram orientated at 45 degrees as Fig. 2
depicts. Fig. 2 also shows triangulation, in which the
number of triangles is 105,578, and the number of nodal
points is 53,046. The truncation number N of DtN map
is 115. The CPU time is about 1 hour. Fig. 3 shows the
absolute value of scattered light. It is very interesting to
see that the retrieved light propagating along −x2 axis,
which is the direction of object light, can be clearly seen
with relatively stronger intensity as well as transmitted
light along x1 direction as the reference light is incident.
It is also interesting to note that some scattering pat-
tern that appears in regular scattering from a cylinder
or a sphere can be seen with much weaker intensity. It
is worthwhile pointing out that no reflection from the
artificial boundary can be observed at all, which means
the DtN map is very effectively working as a transparent
boundary.
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Fig. 4. Model B and its triangulation.
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Fig. 5. The absolute value of scattered waves in Model B.

4.2 Model B

In the next model, the scatterer ΩB is represented by

ΩB = {x ∈ R
2; |u1 + u2|2 ≥ 0.5},

which is created by two counter-propagating Gaussian
beams at 180 degrees along x1 axis:

u1(x1, x2) =
1

2

√

xR

q(x1)
exp

(

− ik1x
2
2

2q(x1)

)

exp(ik1x1),

u2(x1, x2) =
1

2

√

xR

q(x1)
exp

(

− ik1x
2
2

2q(x1)

)

exp(−ik1x1),

where xR ≈ 1.618. The micro-hologram size corresponds
to about 2.2 µm in this case.

As shown in Fig. 4 the scatterer ΩB consists of seven-
teen micro-ellipses. The number of triangles is 585,019,
and the number of nodal points is 1,169,012. The trun-
cation number N of DtN map is 191. The CPU time is
about 3 hours.

Fig. 5 shows the absolute value of the scattered field.

Retrieval of the object light was successfully simulated
with relatively stronger intensity on the left side of the
micro-hologram whereas the reference light is transmit-
ting toward the right side. It is very clear that there is
no reflection from the artificial boundary.

5. Conclusion

A finite element method with a DtN map was success-
fully applied to an optical scattering problem. In compu-
tational results, no reflection from the artificial bound-
ary was observed, which proved that the DtN map effec-
tively reduced an infinite domain problem to a bounded
domain problem even for the case of optical scattering
problem.

Retrieval of the object light from a micro-hologram
was qualitatively simulated as scattering of an incident
reference light in two different configurations. It was con-
firmed that this method can be effectively used for anal-
yses of holographic data storage based on the micro-
hologram.
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