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Abstract

In 1990, the present authors proposed the first ID-based non-interacrive key sharing scheme
(ID-NIKS) based on the discrete logarithm problem (DLP) over a composite number n. With
a rapid progress of computer system for the last two decades, ID-NIKS based on DLP over n

would have more chance to be applied practically. However, there existed no secure ID-NIKS
based on DLP over n against the square-root attack when n is a product of three prime
numbers. In this paper, we propose an ID-NIKS based on DLP over a product of three prime
numbers which can circumvent the square-root attack.
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1. Introduction

The discrete logarithm problem (DLP) has been ex-
tensively studied and successfully applied to the various
cryptographic technologies such as Diffie-Hellman public
key distribution scheme [1].

In the conventional DLP, usually, a prime number is
used for the modulus. However, DLP can be considered
in a more general issue where the modulus is a composite
number, although in such case the discrete logarithm
does not necessarily exist. Hereinafter we shall denote
DLP over a composite number n by DLP(n).

In Sept. 1990, the present authors firstly discussed
DLP over composite number and presented an ID-based
non-interactive key sharing scheme (ID-NIKS) referred
to as MK1 [2]. In Dec. 1990, they presented an improved
version of MK1, referred to as MK2 [3]. In 1991, Mau-
rer and Yacobi presented a scheme referred to as MY [4],
which is similar to our scheme, MK1. Maurer and Yacobi
proposed improved versions of their scheme later [5, 6].
All of these schemes can be regarded as a generalized
version of Diffie-Hellman key sharing scheme using ID as
a public key. Unfortunately these schemes except MK2
cannot circumvent the square-root attack as was dis-
cussed in [7]. In MK2, a product of two prime numbers
is used as the modulus n.

With a rapid progress of computer system for the last
two decades, ID-NIKS based on DLP over a composite
modulus would have more chance to be applied prac-
tically. In SCIS2005, Abe, Kunihiro and Ohta discussed
the practical parameters of ID-based key sharing scheme
using DLP over a composite modulus n [8]. They sug-
gested that the modulus n should be a product of three

prime numbers in MY for a practical realization. Their
suggestion is very interesting. However, unfortunately,
their suggestion could not be successful at that time,
because there existed no secure ID-NIKS using DLP(n)
against the square-root attack for the case where n is
a product of three prime numbers. From the practi-
cal viewpoint, it is very important to construct a se-
cure scheme against the square-root attack when using
a product of three prime numbers as the modulus n.

In this paper, we shall firstly discuss in detail the dis-
crete logarithm problem over n in the case where n is a
product of three prime numbers. We give the conditions
that are required for designing ID-NIKS over DLP(n).
We also show that, for an arbitrary element e such that
(e/n) = 1, either e or −e has the discrete logarithm over
n under the proposed conditions. We then present a new
ID-NIKS based on DLP(n) over a product of three prime
numbers which can circumvent the square-root attack.

2. Preliminaries

2.1 Definitions

Several definitions are given first.

Definition 1 Additive group Zn, and multiplicative
group Z

∗

n and Z
♯
n are defined as follows:

Zn = {0, 1, 2, . . . , n − 1},

Z
∗

n = {x | x ∈ Zn, gcd(x, n) = 1} ,

Z
♯
n =

{

x
∣

∣

∣
x ∈ Z

∗

n,
(x

n

)

= 1
}

,

where (x/n) denotes the Jacobi symbol.
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Definition 2 The cyclic multiplicative group generated
by g ∈ Z

∗

n is denoted by 〈g〉n. That is, the cyclic multi-
plicative group 〈g〉n for an arbitrary element g ∈ Z

∗

n is
represented as follows:

〈g〉n = {y ∈ Z
∗

n | y ≡ gx (mod n), x ∈ Z},

where Z denotes the integer set.

Definition 3 The maximum generator etc., are defined
as follows:

ϕ(n): Euler function i.e. the order of Z
∗

n,

ordn(a): the minimum positive integer e, which is
called the order, such that ae ≡ 1 (mod n)
for an integer a,

λ(n): Carmichael function of n i.e, max{ordn(a) |
a ∈ Z

∗

n},
Maximum generator: elements of order λ(n) in Z

∗

n,

Sn: the set of maximum generators in Z
∗

n.

2.2 DLP over composite number n
The problem to determine x such that y ≡ gx from the

given y and g is called the discrete logarithm problem.
In this problem, in general, a prime number is used as
the modulus. However, it is possible to consider a more
general discrete logarithm problem using a composite
number as the modulus.

As is well known, the multiplicative group Z
∗

n is a
cyclic multiplicative group only when n is 2, 4, an odd
prime number, or an exponent of an odd prime number.
The primitive element exists only in those cases. When
the composite number is used as the modulus, the maxi-
mum generator is used instead of the primitive element.

Let us consider the following relation,

y ≡ gx (mod n), (1)

for g ∈ Sn. In general, for any x ∈ Zλ(n) there exists
y ∈ Z

∗

n satisfying (1). However, it is not always true
that, for any y ∈ Z

∗

n there exists x ∈ Zλ(n) satisfying
(1). We shall refer to the problem for the determination
of x from given y and g over n as DLP(n).

2.3 Square-root attack
If DLP(n) can be solved with the base g in a polyno-

mial time, then the factoring problem of n can be solved
in an expected polynomial time [9]. Indeed, any attacker
who is able to compute the discrete logarithm x of an
arbitrary element e ∈ Z

∗

n can find a factor of n with the
following algorithm:

Square-Root Attack� �
Step 1: Choose e′ randomly from Z

∗

n.

Step 2: Let e ≡ e′2 (mod n).

Step 3: Compute the discrete logarithm x = logg e
determined from given e and g over n. If e does
not have a discrete logarithm then goto Step 1.

Step 4: If gx/2 ≡ ±e′ (mod n) then goto Step 1.

Step 5: Factors of n can be obtained as gcd(gx/2±
e′, n).

� �
It was shown that the scheme using DLP(n) with a pow-

ered element in Z
∗

n is not secure against the square-root
attack [7].

When applying DLP(n) to ID-based key sharing
scheme, it should be noted that the trusted center (TC)
can be used as an oracle of solving DLP(n). Namely an
attacker presents his/her forged ID for TC to obtain the
discrete logarithm of the wanted value. This means that
the use of one-way hash function is essential for being
secure against the square-root attack.

3. DLP over product of 3 primes

Here, we discuss the DLP(n) when n is written by
n = pqr. Further, we assume that the factors of n satisfy
the following condition.

Condition 4 Odd prime numbers p, q and r satisfy
the following relations:











p = 2p′ + 1

q = 2q′ + 1

r = 2r′ + 1,

where gcd(p′, q′) = gcd(q′, r′) = gcd(r′, p′) = 1.

It should be noted that p′, q′ and r′ are not necessarily
required to be prime numbers.

We also assume that the following conditions are sat-
isfied.

Condition 5 The modulus n satisfies the following re-
lation:

(

−1

n

)

= 1. (2)

Condition 6 The maximum generator g ∈ Z
∗

n satisfies
the following relations:

− 1 6∈ 〈g〉n, (3)
( g

n

)

= 1. (4)

The following lemmas on the Legendre symbol are
well-known, where p is a prime number.

Lemma 7 For an integer a, it follows that
(

a

p

)

≡ a
p−1

2 (mod p).

Lemma 8
(

−1

p

)

= (−1)
p−1

2 =

{

1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Lemma 9
(

2

p

)

= (−1)
p2
−1

8 =

{

1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

Relating to Conditions 5 and 6, the following lemmas
are important.

Lemma 10 Let p, q and r be odd prime numbers that
satisfy Condition 4. The necessary and sufficient condi-
tion for the composite number n = pqr to satisfy Condi-
tion 5 is the following:

(p, q, r) ≡ (1, 3, 3), (3, 1, 3), (3, 3, 1) (mod 4). (5)
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Proof From (2), it follows that:
((

−1

p

)

,

(

−1

q

)

,

(

−1

r

))

= (1,−1,−1), (−1, 1,−1),

(−1,−1, 1), (1, 1, 1).

Only the last value (1, 1, 1) does not satisfy Condition 4
because 4|p − 1, 4|q − 1 and 4|r − 1. Consequently, (5)
is obtained from Lemma 8. The converse is straightfor-
ward.

(QED)

Lemma 11 Let g ∈ Z
∗

n be a maximum generator. The
necessary and sufficient condition for g satisfies the re-
lation (g/n) = 1 is the following:

((

g

p

)

,

(

g

q

)

,
(g

r

)

)

= (1,−1,−1), (−1, 1,−1),

(−1,−1, 1).

Proof From (4), it follows that:
((

g

p

)

,

(

g

q

)

,
(g

r

)

)

= (1,−1,−1), (−1, 1,−1),

(−1,−1, 1), (1, 1, 1).

However, it is impossible that g is a maximum generator
in the last value (1, 1, 1) for the following reason. When
(g/p) = 1 holds, it holds that ordp(g)|(p− 1)/2, because
g(p−1)/2 ≡ 1 (mod p) holds from Lemma 7. Similarly,
ordq(g)|(q− 1)/2 and ordr(g)|(r − 1)/2 also hold. Thus,
it follows that ordn(g) = lcm(ordp(g), ordq(g), ordr(g))|
ϕ(n)/8 < λ(n). This concludes the proof. The converse
is straightforward.

(QED)

Corollary 12 Letting gp ∈ Sp, gq ∈ Sq and gr ∈ Sr,
if an element g ∈ Z

∗

n satisfies one of the following con-
gruences, then g is the maximum generator that satisfies
the relation (g/n) = 1:

g ≡











g2
p (mod p),

gq (mod q),

gr (mod r),

g ≡











gp (mod p),

g2
q (mod q),

gr (mod r),

g ≡











gp (mod p),

gq (mod q),

g2
r (mod r).

Lemma 13 If Conditions 4 to 6 are satisfied, the
Z

♯
n can be decomposed into residue classes of 〈g〉n with

{1,−1} as coset leaders (see Table 1).

Proof The Z
♯
n is a multiplicative group of order

ϕ(n)/2. From Condition 6, 〈g〉n forms a subgroup of Z
♯
n.

Consequently, Z
♯
n can be decomposed into residue classes

of 〈g〉n. Since Conditions 5 and 6 are satisfied, {1,−1}
can be used as coset leaders. The order of Z

♯
n is ϕ(n)/2.

Since λ(n) = ϕ(n)/4 from Condition 4, it follows that
2|〈g〉n| = |Z♯

n|. Then all the elements are exhausted.
(QED)

Table 1. Residue class decomposition of Z
♯
n (n = pqr).

〈g〉n 1 g g2 · · · gλ(n)−1

−〈g〉n −1 −g −g2 · · · −gλ(n)−1

We show a small example of residue class decomposition
of Z

♯
n in Table 2.

The following theorem can be derived from Lemma
13.

Theorem 14 If Conditions 4 to 6 are satisfied, letting
e ∈ Z

♯
n, either e or −e has a discrete logarithm over n

with g as the base.

4. Proposed scheme

We shall propose here a new ID-NIKS using DLP(n)
where n is a product of three prime numbers.

Let us denote the identity information of User k as
IDk. Let ek ∈ Z

∗

n be the public key of User k which
is corresponding to IDk, and sk, the secret key of User
k. We assume that TC can solve DLP over each prime
factor of n. TC can then compute the discrete logarithm
of ek over n from the discrete logarithms over all the
prime factors of n with the Chinese remainder theorem.
Let KAB denote the shared key between Users A and B.

4.1 Preparation of TC

TC generates a composite modulus n = pqr and a
maximum generator g so that they may satisfy Condi-
tions 4 to 6. TC publicizes α satisfying (α/n) = −1. TC
also publicizes a one-way hash function h(·) which maps
bit-strings of arbitrary finite length to elements in Z

∗

n so
that anyone can compute ek from IDk.

4.2 Registration of User

From Theorem 14, one and only one of ek, −ek, αek

and −αek has the discrete logarithm over n = pqr for
any α such that (α/n) = −1. TC computes the secret
key sk of User k as the discrete logarithm over n as
follows:

ek = h(IDk),

e′k =











ek if
(ek

n

)

= 1,

αek if
(ek

n

)

= −1,

sk ≡

{

logg e′k (mod λ(n)) if e′k ∈ 〈g〉n,

logg −e′k (mod λ(n)) if e′k 6∈ 〈g〉n.

TC sends sk to User k in a secure channel. It should
be noted that sk can be computed with the Chinese
remainder theorem from the discrete logarithms of e′k
over p, q and r.

4.3 Non-interactive key sharing

User A can generate the shared key KAB as follows:

eB = h(IDB),
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Table 2. Small example of residue class decomposition of Z
♯
n when n = 3 · 5 · 11, (g = 112).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

gi 1 112 4 118 16 142 64 73 91 127 34 13 136 52 49 43 31 7 124 28
−gi 164 53 161 47 149 23 101 92 74 38 131 152 29 113 116 122 134 158 41 137

e′B =











eB if
(eB

n

)

= 1,

αeB if
(eB

n

)

= −1,

KAB ≡ e′2sA

B ≡ g2sAsB (mod n).

4.4 Theorems for particular cases
In the following theorems, prime numbers (p, q, r) ≡

(3, 3, 1) (mod 4) are assumed to be used in the proposed
scheme without loss of generality.

The maximum generator g is assumed to satisfy the
following congruences:

g ≡











g2
p (mod p),

gq (mod q),

gr (mod r),

where gp ∈ Sp, gq ∈ Sq and gr ∈ Sr.

Theorem 15 Let e ∈ Z
♯
n. Then we have e ∈ 〈g〉n if

and only if (e/p) = 1.

Proof From Theorem 14, e belongs to either 〈g〉n or
−〈g〉n. If e ∈ 〈g〉n, e can be uniquely represented as
e ≡ gi (mod n) where i ∈ Zλ(n). Thus,

(

e

p

)

=

(

gi

p

)

=

(

gi
p

p

)2

= 1.

If e 6∈ 〈g〉n, e can be uniquely represented as e ≡ −gi

(mod n) where i ∈ Zλ(n). Thus,
(

e

p

)

=

(

−gi

p

)

=

(

−1

p

)(

gi

p

)

= −1.

Consequently, if (e/p) = 1 then e ∈ 〈g〉n, which is the
converse.

(QED)

From Theorem 15, it is evident that TC can determine
whether e′k ∈ 〈g〉n or not without computing the discrete
logarithm of e′k.

Theorem 16 If p, q and r satisfy one of the following
congruences, the relation (2/n) = −1 holds.

(p, q, r) ≡ (3, 3, 5), (7, 7, 5), (7, 3, 1) (mod 8).

Proof From Lemma 9,
(

2

n

)

=

(

2

p

)(

2

q

)(

2

r

)

= −1.

(QED)

Theorem 16 yields the condition that α = 2 can be
used.

5. Conclusions

We have discussed in detail the discrete logarithm
problem over n where n is a product of three prime

numbers. We have shown the theorem that either e or
−e has the discrete logarithm over n for an arbitrary
element e such that (e/n) = 1. We then have proposed a
new ID-NIKS using the discrete logarithm problem over
a product of three prime numbers based on this theo-
rem. It should be noted that the proposed scheme can
circumvent the square-root attack.
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