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Abstract

In this paper, we use a multivariate affine jump process to model the downgrade intensities
for several categories of business sector in credit portfolios. Since multivariate affine jump
structure enables us to consider self-exciting effects as well as mutually exciting effects, the
model can explain the downgrade clusters observed in the Japanese market. Also, we propose
a new credit derivative named multi-downgrade protection (MDP) as an application of our
model and discuss its fair pricing.
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1. Introduction

In this paper, we present a new modeling of downgrade
risk that has been minor to default risk in the literature
of credit risk study by using the top-down approach
framework introduced by [1]. More specifically, we apply
a multivariate affine jump process (see [2]) or a general-
ized mutually exciting Hawkes model (see [3]) to specify
the downgrade intensities for several categories of busi-
ness sector in credit portfolios.

Fig.1 shows the trajectory of monthly numbers of
category-by-category downgrades announced by Rating
and Investment Information, Inc. (R&I) during April
1998 to September 2009. At first glance, we can see that
there are more downgrades or downgrade clusters from
May 1998 to August 1999, the first half in 2002, and
after the second half of 2008 than other months.

One interpretation of these downgrade clusters is that
downgrade risk is likely to be contagious in the sense
that one downgrade in one category may have some in-
fluences not only on the downgrade intensity of the same
category but also on those of the other categories. There-
fore it looks natural to select a multivariate affine jump
process so as to model the downgrade intensities since
multivariate affine jump structure enables us to consider
self-exciting effects as well as mutually exciting effects.
Dynamic rating transition is usually modeled by rating
transition intensity matrix, but it seems difficult to use
the rating transition matrix to consider dynamic conta-
gion of downgrade risk. Though a non-Markov frame-
works is often used for modeling dependence like conta-
gion, some strong assumptions are necessary to achieve
the rating transition probability matrix via rating tran-
sition intensity matrix as is pointed out in Chap. 6 of [4]
and in Chap. 8 of [5].

As an application of our downgrade risk model, we
propose a new credit derivative named multi-downgrade
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Fig. 1. Trajectory of monthly numbers of category-by-category
downgrades announced by R&I during April 1998 to September
2009. Group A consists of the industry sectors of Communi-
cations, Consumer-Cyclical, Industrial and Technology, which
seems more influenced by business fluctuation, while Group B
consists of Basic Materials, Consumer-Non-cyclical, Energy and
Utilities, which seem less influenced by business fluctuation. In

all, 1,011 downgrades are observed. There are 263 downgrades
are in Fin. category, 562 in Gr.A and 186 in Gr.B.

protection (MDP) that can be a efficient risk hedging
tool for large corporate bond portfolios. We also discuss
the pricing of MDP under some simple assumptions.

Simply put, MDP is supposed to be the contract that
the protection seller pays to the buyer the amount ac-
cording to the pre-agreed rule over and over again when-
ever the particular type of downgrade (for example,
downgrade from the investment grade to the speculative
grade in Gr.A category) happens in the underlying port-
folio during the predetermined period. From a practical
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view, MDP seems more useful to manage downgrade risk
of the portfolio that consists of a wide variety and num-
ber of corporate bonds, because it seems more impor-
tant in total risk management to consider how many
downgrades will happen rather than which bond will be
downgraded.

Indeed, we can finally achieve the consequence that
the (conditional) expectation of the future downgrade
count is essential to evaluate MDP under some assump-
tions. Also, due to the general theory for multivariate
affine jump-diffusion process studied in [6] and [2], we
can easily compute the expectation of the future down-
grade count based on our downgrade intensities. We
show some numerical illustrations of computing the ex-
pected future downgrade count that is related to the
MDP pricing.

2. Modeling of downgrade intensities

We will model contagious downgrade risk with a mul-
tivariate affine jump process, which is a slight general-
ization of self-exciting intensity studied in [2].

Let (Ω,F , P ) be a complete probability space and (Ft)
be the filtration that makes any processes appeared in
this paper adapted.

For some m ∈ N, let 0 (= τ i
0) < τ i

1 < τ i
2 < · · · (i = 1,

· · · ,m) be (Ft)-adapted point processes, that is, in-
creasing sequences of (Ft)-stopping times. τ i

k is regarded
as the time when k-th event of type i happens. Also,
N1

t , · · · , Nm
t are counting processes associated with the

point processes {τ1
k}k∈N, · · · , {τm

k }k∈N, respectively.
Suppose that [N i, N j ]t = 0 almost surely for any i, j

(i 6= j).
Next, L1

t , · · · , Lm
t are (Ft)-adapted pure jump pro-

cesses whose jump times coincide with those of N1
t ,

· · · , Nm
t . More specifically, for each i, Li

t can be char-
acterized by independently and identically distributed
random variables ηi

1, η
i
2, · · · , that is,

Li
t :=

Ni
t

∑

k=1

ηi
k.

Here we suppose that for any k ∈ N and i = 1, · · · ,m,
ηi

k is Fτ i
k
-measurable.

Then we need to specify the intensity process Xi
t as-

sociated with N i
t or equivalently Li

t, namely, an (Ft)-
progressively measurable non-negative process so that
the process M i

t defined by

M i
t := N i

t −

∫ t

0

Xi
sds

is an (Ft)-martingale.
In this study, we aim to model the intensities so that

for any i, Xi
t can be influenced not only by occurrences

of type i event itself (namely “self-exciting” effect), but
also by the events other than type i (namely “mutually
exciting” effect).

Now, we specify the mutually exciting downgrade in-
tensity model as follows. Let m = 3. Hereafter, we regard
the super-indices 1, 2 and 3 as the downgrade of Fin.,
Gr.A and Gr.B categories, respectively. We view Li

t as

the process of the cumulative number of type i events up
to time t. This means that the jump size ηi

k is equal to
the number of type i events which coincidentally happen
at time τ i

k.

We also assume that ~Xt =
t
(X1

t ,X2
t ,X3

t ) satisfies the
following affine-jump type equation.





dX1
t

dX2
t

dX3
t



 =





κ1(c1 − X1
t )

κ2(c2 − X2
t )

κ3(c3 − X3
t )



 dt +

3
∑

i=1





ξ1,i

ξ2,i

ξ3,i



 dLi
t,

(1)

where κj , cj , {ξj,i}i=1,2,3 (j = 1, 2, 3) and the initial

value X
j
0 are all non-negative constant parameters. This

specification can be regarded as a little generalization of
mutually exciting Hawkes model [3].

Note that X
j
t (j = 1, 2, 3) can be represented as

X
j
t = cj + e−κjt(Xj

0 − cj) +

∫ t

0

e−κj(t−s)
3

∑

i=1

ξj,idLi
s.

(2)

Moreover we remark that X
j
t ≥ min{cj ,X

j
0} ≥ 0 for

any t ≥ 0 provided that only positive jumps are allowed
for every Li

t, that is, P (ηi
k ≥ 0) = 1 for any k ∈ N. This

immediately follows from (2) and the assumption that
all the parameters are non-negative.

3. An application: valuation of multi-

downgrade protection

Here we simply define a new derivative named multi-
downgrade protection (MDP) by the over-the-counter
contract that the protection seller has to pay the buyer
some amount according to the predetermined rule every
time a particular type of downgrade occurs in the un-
derlying portfolio, independent of the individual name
downgraded. While [7] and [8] discuss a single downgrade
protection, no multi-downgrade case has been consid-
ered.

We give the mathematical description of MDP here-
after.

Suppose that Q is a risk-neutral probability measure
and fixed. Denote by rt the instantaneous default-free in-
terest rate and by Λ(t, s) = exp(−

∫ s

t
rudu) the discount

factor from time s (≥ t) to time t. Then the price denoted
by Z(t, T ) at time t of the default-free zero-coupon bond
with maturity T is specified by EQ[Λ(t, T )|Ft].

Let N ·

t and L·

t be respectively the counting process
of the times and the cumulative number of a particular
type of downgrade up to time t.

Denote by CT
t a (Ft)-predictable continuous process

that stands for the protection payoff at the time t when
one target downgrade happens before the contract ma-
turity T .

Then the risk-neutral value V
·,T
t at time t of a pro-

tection leg of MDP with expiration T (≥ t) and payoff
process CT

t is specified by the following expression.

V
·,T
t = EQ

[∫ T

t

Λ(t, s)CT
s dL·

s

∣

∣

∣

∣

Ft

]

.
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Using the integration-by-parts formula, we have

V
·,T
t = EQ

[

Λ(t, T )CT
T L·

T

∣

∣

∣

∣

Ft

]

− CT
t L·

t

+ EQ

[∫ T

t

L·

sΛ(t, s)(rsC
T
s ds − dCT

s )

∣

∣

∣

∣

Ft

]

.

For further calculation, we assume the followings.

Assumption 1

( i ) The default-free interest rate {rt} and the particular

downgrade count {L·

t} are independent under Q.

(ii) Specify the protection payoff CT
t by Z(t, T )ϕ(t, T ),

where ϕ(t, T ) is an (Ft)-adapted process defined by

ϕ(t, T ) :=

∫ T

t

EQ[h̄u|Ft]du,

and the process h̄t follows under Q

dh̄u = α(β − h̄t)dt + σhdWh
t , h̄0 > 0,

where α, β and σh are positive constants and Wh
t is

a (Q, (Ft))-standard Brownian motion that is inde-

pendent of rt, L
·

t and Z(t, T ).

Just remark that we can show that CT
t = Z(t, T )ϕ(t,

T ) is viewed as an approximate difference of the price
of corporate zero-coupon bond between before and after
downgrade.

It is easy to see that for s ≥ t

EQ[h̄s|Ft] = (h̄t − β)e−α(s−t) + β. (3)

Hence

ϕ(t, T ) =
h̄t − β

α

(

1 − e−α(T−t)
)

+ β(T − t).

At last, we achieve

dCT
t = ϕ(t, T )dZ(t, T ) + Z(t, T )dϕ(t, T )

= (rtC
T
t − Z(t, T )h̄t)dt + (martingale term).

Thanks to Assumption 1 and the trivial consequence
that CT

T ≡ 0 and µC(s, T ) = rsC
T
s − Z(s, T )h̄s, we can

eventually achieve

V
·,T
t = −CT

t L·

t + Z(t, T )

∫ T

t

EQ[L·

s|Ft]E
Q[h̄s|Ft]ds.

The conditional expectation EQ[h̄s|Ft] is given by (3),
so the remaining issue to solve is how to compute
EQ[L·

s|Ft].

4. Numerical example

In this section, we focus on numerical computation of
the expected downgrade count E[L2

t ] of Gr.A category
under the physical measure P . Although we must use
the pricing measure Q for MDP valuation, we dare to
calculate the expected downgrade count under original
probability P because the parameters seen in Table 1 are
actually estimated from the historical downgrade records
in the Japanese market. Refer to [9] for parameter esti-
mation based on the historical data.

In addition, set η̄1 = 1.98, η̄2 = 1.6, η̄3 = 1.27.

Table 1. The maximum likelihood estimates of the parameters
of the downgrade intensities (1).

X1

0
κ1 c1 ξ1,1 ξ1,2 ξ1,3

19.11 4.08 3.18 1.51 0.00 0.00

X2

0
κ2 c2 ξ2,1 ξ2,2 ξ2,3

42.09 3.26 3.17 1.17 1.00 0.82

X3

0
κ3 c3 ξ3,1 ξ3,2 ξ3,3

24.47 4.34 1.01 0.38 0.44 1.22
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Fig. 2. E[L2
t ] for different values of κ1.

A version of Corollary A.3. of [2] implies that

E[L2
t ] = A(0, t) + B(0, t) ·

t
(X1

0 ,X2
0 ,X3

0 , 0, 0, 0), (4)

where B(0, t) and A(0, t) are obtained as below.
The deterministic function B(0, t) is specified by the

product of the exponential mapping of the 6× 6-matrix
H:












η̄1ξ1,1 − κ1 η̄1ξ2,1 η̄1ξ3,1 1 0 0
η̄2ξ1,2 η̄2ξ2,2 − κ2 η̄2ξ3,2 0 1 0
η̄3ξ1,3 η̄3ξ2,3 η̄3ξ3,3 − κ3 0 0 1

(The components in the last three rows
are all zero.)













and ~e5 :=
t
(0, 0, 0, 0, 1, 0).

This exponential mapping exp(tH) can be numerically
calculated by using Runge-Kutta method. On the other
hand, we can represent A(0, t) as follows.

A(0, t) =

∫ t

0

(κ1c1, κ2c2, κ3c3, 0, 0, 0) · (exp(uH)~e5)du.

We indeed compute A(0, t) by a simple numerical inte-
gration to obtain E[L2

t ] via (4).
At last, we display some numerical results of compar-

ative analysis for some model parameters that are the
long mean reverting speeds κ1 and κ2 as well as the mu-
tually exciting components ξ2,1 and ξ1,2.

First, we change the value of the recursion speed κ1

of downgrade intensity for Fin. category among the esti-
mate 4.08 times 0.6, 0.7, 0.8, 0.9, 1, 1.2 to show the curves
of E[L2

t ] for t ∈ [0, 5] (see Fig. 2). Since some mutually
exciting effect from Fin. to Gr.A is recognized due to the
positive estimate ξ2,1 = 1.17, we expect that the value of
κ1 affects time evolution of E[L2

t ]. We can observe that
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the smaller the value of κ1 is, the larger the expectation
of the target downgrade counts. Small κ1 means that
the downgrade intensity of Fin. remains relatively high
even though time passes, so we consider that defaults are
likely to happen in Fin. and they are contagious for Gr.A
because of the positive mutually exciting effect ξ2,1.

Also, the curve shape of E[L2
t ] are turned from con-

cave to convex as κ1 is decreasing. This seems to imply
that the level of κ1 determines whether the downgrade
intensity is asymptotically stationary or not.

Second, we change the value of the recursion speed
κ2 of Gr.A to the long-term downgrade intensity among
the estimate 3.26 times 0.6, 0.7, 0.8, 0.9, 1, 1.2 to show the
curves of E[L2

t ] (see Fig. 3). As is the same as the κ1,
we can see that the smaller the value of κ2 is, the larger
E[L2

t ] and that the curve shape of E[L2
t ] are turned from

concave to convex as κ2 is decreasing.
Third, we change the value of the mutually exciting

component ξ2,1 from 0 to 6 by 1.2 (see Fig. 4). As is
expected, we see that the larger ξ2,1 becomes, the larger
E[L2

t ] is.
At last, we change the value of the inverse mutually

exciting component ξ1,2 (the estimate is zero) from 0
to 1 by 0.2 (see Fig. 5). As is also expected, the larger
ξ1,2 becomes, the more sharply E[L2

t ] increases. A little
surprisingly, we see the curve shape of E[L2

t ] becomes
convex for relatively small value of ξ1,2. Anyway larger
ξ1,2 means that each downgrade in Gr.A causes a larger
jump of the downgrade intensity of Fin. category, so
downgrades are more likely to occur in Fin. and after
all they are contagious for Gr.A due to the positive mu-
tually exciting effect ξ2,1.

On the whole, the expected downgrade count is likely
to be quite sensitive to the model parameters. This im-
plies the importance of parameter estimation for valua-
tion of MDP.
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