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Abstract

The purpose of this paper is to obtain general solutions of Sakaki-Kakei equations of type

3, 5 and 6. We first obtain general solution of two dimensional discrete dynamical system

associated with arithmetic and harmonic mean through a conjugacy of the iteration map. We

next show that the arithmetic and harmonic mean system is semiconjugate to Sakaki-Kakei

equations of type 3, 5 and 6 under some conditions. From those results, we obtain their general

solutions. We finally clarify behaviors of the solutions.
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1. Introduction

In [1], two dimensional discrete dynamical system as-
sociated with arithmetic and harmonic mean (AHM) is
considered. It is shown that some particular solutions
of AHM are obtained by hyperbolic and trigonometric
functions, and that AHM is solvable chaotic system un-
der some conditions with respect to initial values. In [2],
the higher order discrete systems of AHM are presented.
The general solutions of the systems are obtained by
tridiagonal determinants, and the Lyapunov exponents
of the systems are obtained through determinant solu-
tions. In [3], Sakaki and Kakei focused on the fact that
the conserved quantity of AHM can be obtained by an
identity of hypergeometric function. Then, they derived
twelve types of two dimensional discrete systems from
other identities of hypergeometric function. The derived
systems have the conserved quantities in terms of hy-
pergeometric function, however, their solutions are not
discussed. The purpose of this paper is to obtain general
solutions of Sakaki-Kakei equations of type 3, 5 and 6.
Here, the types of Sakaki-Kakei equations are numbered
in order of appearance in their paper. For simplicity, the
Sakaki-Kakei equations of type 3, 5 and 6 are named as
SK3, SK5 and SK6, respectively.

This paper is organized as follows. In Section 2, we
first derive a conjugacy of iteration map of AHM from
one dimension reduction, and obtain general solution of
AHM through conjugacy of map. In Section 3, we next
show that AHM is semiconjugate to SK3, SK5 and SK6
under some conditions. From the solution of AHM, we
obtain general solutions of SK3, SK5 and SK6. In Section
4, we clarify behaviors of their solutions. In Section 5,
some conclusion are mentioned.

2. Conjugacy of AHM

In [1], the equation of AHM is given by

an+1 =
an + bn

2
, bn+1 =

2anbn
an + bn

(1)

for n = 0, 1, 2, . . . and a0, b0 ∈ R.
In [3], the conserved quantity of (1) is derived from an

identity of hypergeometric function,

2F1(α, β, γ; x) = 1 +
∞
∑

n=1

(α)n(β)n

(γ)nn!
xn, |x| < 1, (2)

where (α)n =
∏n−1

j=0 (α+ j) for n = 1, 2, 3, . . . . Let

In =
1

an
2F1

(

1

2
, 1, 1; 1 − bn

an

)

. (3)

Then, it follows that In = In+1 for n = 0, 1, 2, . . . .
Hence, In is the conserved quantity of (1). Moreover,
(3) can be rewritten by virtue of the integral expression,

2F1

(

1

2
, 1, 1; x

)

=
Γ(1)

Γ(1/2)2

∫

∞

0

dt

(t+ 1 − x)
√
t
. (4)

Since the integral in (4) is integrable, it holds that

2F1

(

1

2
, 1, 1; x

)

=
1√

1 − x
. (5)

From (3) and (5), it follows that In = 1/
√
anbn.

In [1], AHM is reduced to one dimensional system by
using conserved quantity Ĩn = 1/(In)2 = anbn. Let c =
a0b0. Then, Ĩn = Ĩ0 yields anbn = c for n = 0, 1, 2, . . . .
By eliminating bn in (1) with bn = c/an, AHM is reduced
to

an+1 =
1

2

(

an +
c

an

)

, c ∈ R\{0}, n = 0, 1, . . . . (6)

Let us denote the iteration function of (6) as

Φ(c;x) =
1

2

(

x+
c

x

)

, c ∈ R\{0}. (7)

Then, (6) is expressed as an+1 = Φ(an). Note here that
Φ is Newton iteration function Φ(x) = x − f(x)/f ′(x)
for f(x) = x2 − c (cf. [2]).

If maps Ψ : X → X, ψ : X → Y , σ : Y → Y for sets
X, Y satisfy Ψ = ψ−1 ◦ σ ◦ ψ, and ψ is homeomorphic,
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namely, one-to-one, onto, and continuous function with
continuous inverse, then Ψ is dynamically equivalent to
σ. We say that Ψ : X → X is conjugate to σ : Y → Y ,
and ψ is a conjugacy of Ψ (cf. [4, pp. 108–109]).

In [1], [4, p. 172], the map Φ(c;x) for c < 0 is conjugate
to the Bernoulli shift, which is well known as chaotic
dynamical system. Thus, it turns out that Φ is chaotic
system if c < 0.

In this paper, we derive another conjugacy of Φ in
order to obtain general solution for any c ∈ R\{0}. Let
us introduce a function φ defined by

φ(c;x) =
x−√

c

x+
√
c
, c ∈ R\{0}. (8)

Note here that square root in (8) is not single-valued
function if its argument value is negative. For simplicity
of discussion, all of square roots in this paper are treated
as single-valued function such that

√
c = i

√
−c if c < 0.

Here, i is imaginary unit. From (8), we have

φ−1(c;x) =
√
c
1 + x

1 − x
. (9)

Let Q(x) = x2. From (7), (8) and (9), it formally holds
that

Φ = φ−1 ◦Q ◦ φ. (10)

Suppose that c > 0. Let R
∗ = R ∪ {∞}. From (8),

(9), the map φ : R
∗ → R

∗ with satisfying φ(∞) = 1,
φ(−√

c) = ∞ is obviously homeomorphic. It holds that
Q : R

∗ → R
∗. Hence, the map Φ : R

∗ → R
∗ is conjugate

to Q : R
∗ → R

∗. Suppose that c < 0. Let us denote
the unit circle in C as S = {z ∈ C | |z| = 1}. From (8)
and

√
c = i

√
−c, it follows that x ∈ R

∗, φ(x) = eiθ ∈
S, θ = −2 tan−1(

√
−c/x). The map φ : R

∗ → S with
satisfying φ(∞) = 1 is continuous bijection. From (9), it
follows that φ−1(eiθ) = −

√
−c sin(θ)/(1 − cos(θ)). The

map φ−1 is continuous. Hence, the map φ : R
∗ → S is

homeomorphic. It holds that Q : S → S. Thus, the map
Φ : R

∗ → R
∗ is conjugate to Q : S → S.

Let us denote the imaginary axis in C as T = {iy ∈ C |
y ∈ R} ∪ {∞}. In order to obtain solutions of SK3, SK5
and SK6, we show a conjugacy of map Φ : T → T .
Similar to above discussion, it follows that φ : T → S
is homeomorphic if c > 0, and that φ : T → R

∗ is
homeomorphic if c < 0. Recall that Q : S → S and
Q : R

∗ → R
∗. Hence, the map Φ : T → T is conjugate

to Q : S → S if c > 0, or Q : R
∗ → R

∗ if c < 0. Thus,
we have the following theorem.

Theorem 1 The map Φ : R
∗ → R

∗ is conjugate to

Q : R
∗ → R

∗ if c > 0, or Q : S → S if c < 0. The

map Φ : T → T is conjugate to Q : S → S if c > 0, or

Q : R
∗ → R

∗ if c < 0.

In the case where c = −1, this fact was first proved
by Cayley in 1879. In the case where c = ±1, it is shown
in [4, pp. 274–275].

It follows from an+1 = Φ(an) and (10) that φ(an+1) =
Q(φ(an)). Let zn = φ(an). Recall that Q(x) = x2. From
Theorem 1, it turns out that the system an+1 = Φ(an)
is equivalent to zn+1 = (zn)2 if a0 ∈ R

∗ or a0 ∈ T . From
z0 = φ(a0), an = φ−1(zn), and the solution zn = (z0)

2n

of zn+1 = (zn)2, we have the following theorem.

Theorem 2 Suppose that c ∈ R\{0}. If a0 ∈ R
∗ or

a0 ∈ T , then the general solution of an+1 = Φ(an) is

an = (φ−1 ◦ x2n ◦ φ)(a0), n = 0, 1, 2, . . . . (11)

Recall that bn = c/an, c = a0b0. From (8), (9) and
Theorem 2, we have the following theorem.

Theorem 3 Let c = a0b0, λ1 = a0 +
√
c, and λ2 =

a0 −
√
c. The general solution of AHM (1) is

an =
√
c
λ2n

1 + λ2n

2

λ2n

1 − λ2n

2

, bn =
√
c
λ2n

1 − λ2n

2

λ2n

1 + λ2n

2

(12)

for n = 0, 1, 2, . . . . Here, a0, b0 are both real numbers, or

both pure imaginary numbers, which satisfy a0b0 6= 0 and

a0+b0 6= 0. If a0 = 0, b0 6= 0, AHM has singular solution

an = b0/2
n, bn = 0 for n = 1, 2, 3, . . . . If a0 6= 0, b0 = 0,

AHM has singular solution an = a0/2
n, bn = 0 for n =

1, 2, 3, . . . . If a0 + b0 = 0, AHM does not have solution.

The solution (12) can be also obtained through the so-
lution in [2], which is expressed by tridiagonal determi-
nant. The tridiagonal determinant satisfies linear differ-
ence equation of the second order. Solving the equation
and rewriting its solution, we can obtain (12).

3. Solutions of SK3, SK5 and SK6

In [3], the equation of SK3 is given by

an+1 =
(an + bn)2

an − bn
, bn+1 =

4anbn
an − bn

, (13)

which has the conserved quantity,

I(3)
n =

1

an
2F1

(

1

2
,
3

4
,
3

4
;
bn
an

)

. (14)

Note here that I
(3)
n in [3] is erratum. The equation of

SK5 is given by

an+1 =
(2an − bn)2

4an

, bn+1 =
bn

2

4an

, (15)

which has the conserved quantity,

I(5)
n =

1√
an

2F1

(

1

2
, 1, 1;

bn
an

)

. (16)

The equation of SK6 is given by

an+1 =
4an(an − bn)2

(2an − bn)2
, bn+1 =

−bn2(an − bn)

(2an − bn)2
, (17)

which has same conserved quantity I
(6)
n as (16).

Along the line similar to AHM, we first rewrite the
conserved quantities of SK3, SK5 and SK6. It follows
from (2) that

2F1

(

1

2
,
3

4
,
3

4
; x

)

= 1 +

∞
∑

n=1

(

1
2

)

n

n!
xn =

1√
1 − x

. (18)

Substituting (18) into (14) and substituting (5) into (16),
we have the following theorem.

Theorem 4 All of the conserved quantities of SK3,

SK5 and SK6 are I
(3)
n = I

(5)
n = I

(6)
n = 1/

√
an − bn.

From Theorem 4, we next reduce SK3, SK5 and SK6
to one dimensional discrete systems by using În =
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(I
(3)
n )−2 = (I

(5)
n )−2 = (I

(6)
n )−2 = an−bn. Let ĉ = a0−b0.

Then, În = Î0 yields an − bn = ĉ for n = 0, 1, 2, . . . . By
eliminating bn in (13), (15) and (17) with bn = an− ĉ, we
obtain one dimensional systems of SK3, SK5 and SK6,
respectively, as following theorem.

Theorem 5 If ĉ = a0 − b0 6= 0, SK3 (13) is reduced to

an+1 =
1

ĉ
(2an − ĉ)2, n = 0, 1, 2, . . . . (19)

If ĉ = a0 − b0 6= 0, SK5 (15) is reduced to

an+1 =
(an + ĉ)2

4an

, n = 0, 1, 2, . . . . (20)

If ĉ = a0 − b0 6= 0, SK6 (17) is reduced to

an+1 =
4ĉ2an

(an + ĉ)2
, n = 0, 1, 2, . . . . (21)

Let us denote the iteration functions Φ3(ĉ;x), Φ5(ĉ;x)
and Φ6(ĉ;x) of (19), (20) and (21) as

Φ3 =
(2x− ĉ)2

ĉ
, Φ5 =

(x+ ĉ)2

4x
, Φ6 =

4ĉ2x

(x+ ĉ)2
(22)

for ĉ ∈ R\{0}, respectively. Then, (19), (20) and (21)
are expressed as an+1 = Φ3(an), an+1 = Φ5(an) and
an+1 = Φ6(an), respectively.

If maps Ψ : X → X, ψ : X → Y , σ : Y → Y for sets
X, Y satisfy ψ ◦ Ψ = σ ◦ ψ, and ψ is continuous, onto,
and at most m-to-one, then we say that Ψ : X → X is
semiconjugate to σ : Y → Y , and ψ is a semiconjugacy
of Ψ (cf. [4, p. 125]).

Let us define the functions η3, η5 and η6 by

η3(ĉ;x) =
ĉx2

x2 − 1
, η5(x) = x2, η6(x) =

1

x2
. (23)

From (7), (22) and (23), it formally holds that

η3 ◦ Φ = Φ3 ◦ η3 if c = 1, (24)

η5 ◦ Φ = Φ5 ◦ η5 if c = ĉ, (25)

η6 ◦ Φ = Φ6 ◦ η6 if c =
1

ĉ
. (26)

Let us denote that R
+ = {x ∈ R |x ≥ 0}∪{∞}, R

− =
{x ∈ R |x ≤ 0} ∪ {∞}, U1 = {x ∈ R | |x| ≥ 1} ∪ {∞},
D1 = {x ∈ R | 1 ≤ x < +∞} ∪ {∞}, and D2 = {x ∈
R | 0 ≤ x ≤ 1}. Let us define ĉD = {ĉx ∈ R

∗ |x ∈ D} for
ĉ ∈ R\{0} and a set D. From (23), it follows that η3 :
U1 → ĉD1, η3 : T → ĉD2, η5 : R

∗ → R
+, η5 : T → R

−,
η6 : R

∗ → R
+, and η6 : T → R

− are continuous, onto,
and at almost two-to-one maps. From (7), (22), it holds
that Φ : R

∗ → R
∗, Φ : T → T , Φ : U1 → U1 if c = 1,

Φ3 : ĉD1 → ĉD1, Φ3 : ĉD2 → ĉD2, Φ5 : R
+ → R

+,
Φ5 : R

− → R
−, Φ6 : R

+ → R
+, and Φ6 : R

− → R
−.

Thus, we have the following theorems.

Theorem 6 If c = 1, ĉ ∈ R\{0}, the maps Φ : U1 →
U1 and Φ : T → T are semiconjugate to Φ3 : ĉD1 → ĉD1

and Φ3 : ĉD2 → ĉD2, respectively.

Theorem 7 If c = ĉ ∈ R\{0}, the maps Φ : R
∗ → R

∗

and Φ : T → T are semiconjugate to Φ5 : R
+ → R

+ and

Φ5 : R
− → R

−, respectively.

Theorem 8 If c = 1/ĉ ∈ R\{0}, the maps Φ : R
∗ →

R
∗ and Φ : T → T are semiconjugate to Φ6 : R

+ → R
+

and Φ6 : R
− → R

−, respectively.

Let ãn be a solution of AHM for ã0 ∈ R
∗ or ã0 ∈ T .

Namely, ãn satisfies ãn+1 = Φ(ãn) for n = 0, 1, 2, . . . .
From the map ηj for j = 3, 5, 6, we derive ηj(ãn+1) =
ηj(Φ(ãn)) for j = 3, 5, 6, respectively. Suppose that Φ
satisfies one of the conditions of Theorems 6, 7 and 8.
From (24), (25) and (26), it follows that

ηj(ãn+1) = Φj(ηj(ãn)). (27)

Let an = ηj(ãn). Then, we have an+1 = Φj(an). Namely,
an = η3(ãn), an = η5(ãn) and an = η6(ãn) for n =
0, 1, 2, . . . are solutions of SK3, SK5 and SK6, respec-
tively. The solution ãn of AHM is given by (11), where
an, a0 are replaced with ãn, ã0, respectively, and c in φ
takes a value c = 1 for SK3, c = ĉ for SK5, and c = 1/ĉ
for SK6. Recall that bn = an − ĉ, ĉ = a0 − b0. All of
the solutions bn for SK3, SK5 and SK6 are given by
bn = an − a0 + b0 for n = 0, 1, 2, . . . .

The initial value ã0 of AHM is determined from a0

such that ηj(ã0) = a0. Though ã0 can take two real or
pure imaginary values, each of an = ηj(ãn) given by a
chosen ã0 becomes a solution of an+1 = Φj(an). Obvi-
ously, the systems (13), (15) and (17) generate unique
solutions, so that both of solutions are equivalent. For
simplicity, we choose ã0 as ã0 =

√

a0/(a0 − ĉ) for SK3,
ã0 =

√
a0 for SK5, and ã0 = 1/

√
a0 for SK6.

From Theorems 7 and 8, there exist solutions an =
η5(ãn), an = η6(ãn) for a0 ∈ R

∗ = R
+ ∪ R

−. From
Theorem 6, there exists solution an = η3(ãn) for a0 ∈
ĉD1 ∪ ĉD2. Moreover, we can obtain solution of SK3
for a0 ∈ ĉR− as follows. Let U2 = {x ∈ R | |x| ≤ 1}.
From (7), (22) and (23), it holds that η3 : U2 → ĉR−,
Φ3 : ĉR− → ĉD1, and Φ : U2 → U1 if c = 1. Note
here that the map Φ : U2 → U1 is not semiconjugate
to Φ3 : ĉR− → ĉD1. If ã0 ∈ U2, η3(ã0) = a0 ∈ ĉR−,
then it follows that Φ(ã0) = ã1 ∈ U1, η3(ã1) ∈ ĉD1, and
Φ3(a0) = Φ3(η3(ã0)) ∈ ĉD1. Hence, it holds that (27)
for n = 0. We have a1 = η3(ã1). Since a1 ∈ ĉD1, it holds
that (27) for n = 1, 2, 3, . . . by Theorem 6. There exists
solution an = η3(ãn) for a0 ∈ ĉR−. The domain of initial
value of SK3 is R

∗ = ĉD1 ∪ ĉD2 ∪ ĉR−.
Thus, we have the following theorems.

Theorem 9 Let ĉ = a0 − b0, λ3 = (
√
a0 +

√
b0)/

√
ĉ,

and λ4 = (
√
a0 −

√
b0)/

√
ĉ. The general solution of SK3

(13) is

an =
ĉ

4

(

λ2n

3 + λ2n

4

)2

, bn =
ĉ

4

(

λ2n

3 − λ2n

4

)2

(28)

for n = 0, 1, 2, . . . and real initial values a0, b0 such that

a0 6= b0. If a0 = b0, SK3 does not have solution.

Theorem 10 Let ĉ = a0 − b0, λ5 =
√
a0 +

√
ĉ, and

λ6 =
√
a0 −

√
ĉ. The general solution of SK5 (15) is

an = ĉ

(

λ2n

5 + λ2n

6

λ2n

5 − λ2n

6

)2

, bn = an − a0 + b0 (29)

for n = 0, 1, 2, . . . and real initial values a0, b0 such

that a0 6= 0, a0 6= b0 and 2a0 6= b0. If a0 = b0, SK5

has singular solution an = a0/4
n, bn = b0/4

n for n =
0, 1, 2, . . . . If a0 = 0 or 2a0 − b0 = 0, SK5 does not have
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solution.

Theorem 11 Let ĉ = a0 − b0, λ7 =
√
ĉ +

√
a0, and

λ8 =
√
ĉ−√

a0. The general solution of SK6 (17) is

an = ĉ

(

λ2n

7 − λ2n

8

λ2n

7 + λ2n

8

)2

, bn = an − a0 + b0, (30)

for n = 0, 1, 2, . . . and real initial values a0, b0 such that

a0 6= b0, 2a0 6= b0. If a0 − b0 = 0 or 2a0 − b0 = 0, SK6

does not have solution.

4. Behaviors of solutions

In this section, we clarify behaviors of the general solu-
tions (28), (29) and (30). Let us introduce the functions
φ3, φ5, φ6 and their inverse by

φ3(x) =

√
x−

√
x− ĉ√
ĉ

, φ−1
3 (x) =

ĉ

4

(

x+
1

x

)2

, (31)

φ5(x) =

√
x−

√
ĉ

√
x+

√
ĉ
, φ−1

5 (x) = ĉ

(

1 + x

1 − x

)2

, (32)

φ6(x) =

√
ĉ−√

x√
ĉ+

√
x
, φ−1

6 (x) = ĉ

(

1 − x

1 + x

)2

. (33)

Thus, we have the following theorem.

Theorem 12 Solutions an of (28), (29) and (30) are

expressed as

an = (φ−1
j ◦ x2n ◦ φj)(a0), n = 0, 1, 2, . . . (34)

for j = 3, 5, 6, respectively.

It may seem that φ3, φ5 and φ6 are conjugacies of Φ3,
Φ5 and Φ6, respectively, because (34) is same as (11) in
Theorem 2. However, the maps φj : R

∗ → S for ĉ < 0,
j = 3, 5, 6 are not homeomorphic, so that they cannot
be conjugacies of Φj , respectively.

Let z0 = φj(a0) ∈ C, zn = (z0)
2n ∈ C. From (34), it

holds that an = φ−1
j (zn). Let us denote zn in polar form

zn = rne
iθn , 0 ≤ rn, 0 ≤ θn < 2π for n = 0, 1, 2, . . . .

Then, we have zn = (r0)
2n

ei2nθ0 . The behavior of the
solution an = φ−1

j (zn) depends on r0, θ0. From (31), (32)
and (33), it turns out that there exist the following six
cases. (i) If 0 < r0 < 1, θ0 = 0, then zn monotonically
converges to 0. (ii) If 0 < r0 < 1, θ0 6= 0, then zn

oscillatory converges to 0. (iii) If r0 > 1, θ0 = 0, then
zn monotonically diverges. (iv) If r0 > 1, θ0 6= 0, then
zn oscillatory diverges. (v) If r0 = 1, θ0 6= 0, then it
follows that |zn| = 1 and the map θn/(2π) 7→ θn+1/(2π)
is conjugate to the Bernoulli shift (cf. [4, p. 125]). Hence,
zn is chaotic. (vi) If z0 = 1 or z0 = 0, then zn is fixed
point. Thus, we have the following theorems.

Theorem 13 The solution (28) of SK3 (13) behaves as

follows. If a0(a0−b0) > 0, then an and bn monotonically

diverge. If a0(a0 − b0) < 0, then an and bn oscillatory

diverge. If a0b0 < 0, then an and bn are chaotic. If a0 6=
0, b0 = 0, then an = a0, bn = 0 is fixed point.

Theorem 14 The solution (29) of SK5 (15) behaves as

follows. If a0(a0−b0) > 0, then an and bn monotonically

converge to a0 − b0, 0, respectively. If a0b0 < 0, then an

and bn oscillatory converge to a0 − b0, 0, respectively. If

a0(a0 − b0) < 0, then an and bn are chaotic. If a0 6= 0,
b0 = 0, then an = a0, bn = 0 is fixed point.

Theorem 15 The solution (30) of SK6 (17) behaves

as follows. If a0b0 < 0, then an and bn monotonically

converge to a0 − b0, 0, respectively. If a0(a0 − b0) > 0,
then an and bn oscillatory converge to a0−b0, 0, respec-

tively. If a0(a0 − b0) < 0, then an and bn are chaotic. If

a0 = 0, b0 6= 0, then an = 0, bn = b0 is fixed point. If

a0 6= 0, b0 = 0, then an = a0, bn = 0 is fixed point.

In special cases for initial values a0, b0, the solutions
are expressed by hyperbolic and trigonometric functions.
Thus, we have the following theorems.

Theorem 16 Let ĉ = a0 − b0. If a0 > b0 > 0, then the

solution of SK3 (13) is given by an = ĉ cosh2(2nµ), bn =
ĉ sinh2(2nµ) where µ = tanh−1

√

b0/a0. If a0 > 0, b0 <
0, then the solution of SK3 is given by an = ĉ cos2(2nµ),
bn = −ĉ sin2(2nµ) where µ = tan−1

√

−b0/a0.

Theorem 17 Let ĉ = a0 − b0. If a0 > b0 > 0, then

the solution of SK5 (15) is given by an = ĉ coth2(2nµ),
bn = ĉ(coth2(2nµ) − 1) where µ = tanh−1

√

ĉ/a0. If

b0 > a0 > 0, then the solution of SK5 is given by

an = −ĉ cot2(2nµ), bn = −ĉ(cot2(2nµ) + 1) where

µ = tan−1
√

−ĉ/a0.

Theorem 18 Let ĉ = a0 − b0. If a0 > 0, b0 < 0, then

the solution of SK6 (17) is given by an = ĉ tanh2(2nµ),
bn = ĉ(tanh2(2nµ) − 1) where µ = tanh−1

√

a0/ĉ. If

b0 > a0 > 0, then the solution of SK5 is given by

an = −ĉ tan2(2nµ), bn = −ĉ(tan2(2nµ) + 1) where

µ = tan−1
√

−a0/ĉ.

Theorems 16, 17 and 18 can be proved by using double
angle formulae of hyperbolic and trigonometric func-
tions, similar to proof about particular solutions of AHM
in [1].

5. Conclusion

In this paper, we first obtain the general solution of
AHM for real and pure imaginary initial values through
a conjugacy of the iteration map. We next show AHM is
semiconjugate to SK3, SK5 and SK6 under some condi-
tions. We obtain the general solutions of SK3, SK5 and
SK6 from the general solution of AHM. We finally show
behaviors of their solutions. Moreover, we obtain partic-
ular solutions by hyperbolic and trigonometric functions
for special cases of initial values. Further problems are to
obtain solutions of the other types of Sakaki-Kakei equa-
tions, and to derive an identity of hypergeometric func-
tion associated with the higher order systems of AHM.
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