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Abstract

In [1], a knapsack based cryptosystem is proposed using number fields as a scheme of quantum
public key cryptosystems. We studied on key generation of this scheme in the case of imaginary
quadratic fields [2]. In this paper, we study the cases of real quadratic fields and cubic fields.
We first give some propositions for practical key generation. We then estimate various densities
of the generated knapsack problems for these cases and for the imaginary quadratic case. We
further generate explicit public keys and knapsack problems for several special cases and test
the resistance against low-density attacks.

Research Activity Group Algorithmic Number Theory and Its Applications

1. Introduction

Shor proved that the integer factoring problem and
the discrete logarithm problem (DLP) could be solved
in polynomial time by using the quantum turing machine
(QTM) in [3]. Therefore, public-key cryptosystems based
on these problems are not secure when a QTM is re-
alized. A concept of quantum public-key cryptosystem
(QPKC) with a concrete scheme (OTU2000) in [1] gives
the first answer to this problem. OTU2000, a knapsack
based cryptosystem, seems to be secure even against
QTM adversaries. We need QTMs only to solve the
DLP in number fields for generating public keys from
private keys. We are interested in generating keys with-
out QTMs and estimating its security. We gave practical
key generation algorithms for imaginary quadratic fields
in [2].

The purpose of this paper is to give some proposi-
tions and to report the results for OTU2000 over real
quadratic and cubic fields. As a consequence, we can
efficiently generate explicit public keys such that low-
density attacks almost always fail at the stage of solving
the shortest vector problem.

In Section 2, we generalize the practical key genera-
tion algorithm for imaginary quadratic fields in [2] to
arbitrary fields. In Section 3, we give important propo-
sitions to implement OTU2000 over real quadratic fields
and cubic fields. In Section 4, we show experimental re-
sults about various densities of the generated knapsack
problem and study the resistance against low-density at-
tacks. In Section 5, we discuss conclusions and future
problems.

2. Key generation of OTU2000

First, we generalize the key generation algorithm in
[2]. Let K be a number field defined by a monic irre-
ducible polynomial f ∈ Z[x] of degree r, OK the ring of

integers of K, and ω1 := 1, ω2, . . . , ωr form an integral
basis of K. We also define a subset At of OK by

At :=

{

z1ω1 + · · · + zrωr

∣

∣

∣

∣

zi ∈ Z, − t

2
≤ zi ≤

t

2

}

. (1)

Algorithm 1 Given (n, k, f), this algorithm outputs
a private key (f, g, e, p, S) and a public key (n, k, b).

1. Choose ℓ ∈ Z suitably, and let P be the set of prime
elements of K in A2ℓ.

2. Randomly take a subset S = {S1, · · · , Sn} of n non-
associate elements of P .

3. Choose a rational odd prime number p so that pOK

is a prime ideal of OK satisfying the following con-
dition (2), and randomly choose g ∈ OK such that
〈g (mod pOK)〉 = (OK/pOK)×.

k
∏

j=1

Sij
∈ Ap for ∀{Si1 , · · · , Sik

} ⊂ S. (2)

4. Randomly choose e ∈ Z with 0 ≤ e ≤ pr − 2. For
each i from 1 to n, compute ai such that gai ≡ Si

(mod pOK) and compute bi ≡ ai + e (mod pr − 1).
Set b := (b1, · · · , bn). Then output the private key
(f, g, e, p, S) and the public key (n, k, b).

Remark 2 Actually, we implemented and experi-

mented under the following settings. We set ℓ to be the

smallest so that A2ℓ has at least n non-associate prime

elements of K. If q is the smallest p satisfying (2), we

take p in the step 3 randomly between q and 2q. Then S
is almost determined by ωi and n, but it does not cause

a problem since K and p are still hidden.

3. Real quadratic fields and cubic fields

We first give important propositions to implement
OTU2000 over real quadratic fields and cubic fields. Dif-
ferent from the imaginary quadratic case, there are two
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difficulties in Algorithm 1 when we take S and p. One
is how to judge associate in P . It is easy to judge as-
sociate in imaginary quadratic fields since the group of
units is finite and simple. In order to judge associate in
other fields, there are so many α, β ∈ A2ℓ with the same
norm, and it is necessary to compute and see whether
α/β ∈ OK for each such pair, since the group of units is
infinite. Hence, we change the step 1 as follows:

1. Let P = ∅. Repeat the following by increasing ℓ
until P has at least n element. For each π ∈ A2ℓ,
if π is a prime element with norm coprime to any
element of P , then replace P by P ∪ {π}. For each
π ∈ P , if π′ is a non-associate conjugate of π which
belongs to A2ℓ, then replace P by P ∪ {π′}.

Then P does not have associate elements.
Next is how to verify the condition (2). There is a

simple sufficient condition of (2) for imaginary quadratic
fields using norms [1,2]. Then, to choose p, we may com-
pute norms n times instead of computing multiplications
(

n
k

)

times. There is, however, no such sufficient condition
for real quadratic fields and cubic fields. Therefore, we
propose several sufficient conditions in the following.

3.1 The case of real quadratic fields

Proposition 3 Let K = Q(
√

θ) be a real quadratic

field and OK = Z[ω] be the ring of integers of K, where

θ is a square-free positive integer, ω = (1 +
√

θ)/2 if

θ ≡ 1 (mod 4) and ω =
√

θ otherwise. For zij ∈ Z and

zi ∈ Z>0, write
∏k

j=1(z1j + z2jω) = X1 +X2ω and (z1+

z2ω)k = X1
′ + X2

′ω with Xi,Xi
′ ∈ Z. Assume |zij | ≤ zi

(i = 1, 2, j = 1, . . . , k). Then |Xi| ≤ Xi
′(i = 1, 2).

Proposition 3 means that the product of k integers in
A2ℓ always belongs to Ap if the condition

(ℓ + ℓω)k ∈ Ap (3)

holds. Namely, (3) is a sufficient condition of (2). There-
fore, we can choose p by one power computation. The
size of p, however, grows big as θ grows big in general.
So we propose the following proposition to make the size
of p as small as possible.

Proposition 4 Let K,OK and ω be as above. Write

(c + ω/c)k = X1,c + X2,cω, where c is a positive integer.

Put cm := ⌊√ω +0.5⌋. Then the minimum Xi,c is Xi,cm

if ω =
√

θ and is Xi,cm
or Xi,cm±1 otherwise (i = 1, 2).

By Proposition 4, if we let P be a subset of the set
{z1 + z2ω | zi ∈ Z, |z1| ≤ ℓc, |z2| ≤ ⌊ℓ/c⌋} instead of the
set A2ℓ in the step 1, then the condition

(

ℓc +

⌊

ℓ

c

⌋

ω

)k

∈ Ap (c = ⌊√ω + 0.5⌋) (4)

is a sufficient condition of (2). Similar type of refinement
is possible for imaginary quadratic fields, too.

3.2 The case of cubic fields

We can generalize Proposition 3 for cubic fields as
follows:

Proposition 5 Let K = Q(ω) be a cubic field such that

the ring of integers of K is OK = 〈1, ω, ω2〉, where ω is

a root of f(x) = x3 + a2x
2 + a1x + a0 with a0, a1, a2 ≤ 0

irreducible over Q. For zij ∈ Z and zi ∈ Z>0, write
∏k

i=1(z1j + z2jω + z3jω
2) = X1 +X2ω +X3ω

2 and (z1 +
z2ω + z3ω

2)k = X1
′ + X2

′ω + X3
′ω2 with Xi,Xi

′ ∈ Z.

Assume |zij | ≤ zi (i = 1, 2, 3, j = 1, . . . , k). Then |Xi| ≤
Xi

′ (i = 1, 2, 3).

Proposition 5 is not so practical since OK must have a
power basis with another condition. Therefore we pro-
pose a proposition applicable to any cubic fields.

Proposition 6 Let K be a cubic field such that the

ring of integers of K is OK = 〈1, ω2, ω3〉. For zij ∈ Z

and s, t, u ∈ Z≥0, write
∏k

j=1(z1j+z2jω2+z3jω3) = X1+

X2ω2 + X3ω3, ω2
tω3

u = z1
(tu) + z2

(tu)ω2 + z3
(tu)ω3 and

∑

s+t+u=k{|z1
(tu)| + |z2

(tu)|ω2 + |z3
(tu)|ω3}

(

k
s

)(

k−s
t

)

=

M1 + M2ω2 + M3ω3, where Xi, zi
(tu),Mi ∈ Z. If M =

max |zij | and C = max |Mi|, then |Xi| ≤ MkC.

By Proposition 6, the coefficients of the product of k
integers in A2ℓ is bounded by Cℓk. Therefore, the con-
dition

ℓkC ≤ 2p (5)

is a sufficient condition of (2). In order to evaluate C, we
may compute ω2

tω3
u for about k2/2 pairs (t, u). Then we

can choose p by condition (5) for arbitrary cubic fields.
In such a way, we can generate keys efficiently. Whether
it is effective or not, this kind of discussion is possible
for general number fields.

4. Experimental results

We now give the results of our experiment using
MAGMA [4]. Our environment is as follows:

CPU: AMD Opteron 246x2 2GHz(Dual),
Software: MAGMA V2.15-14.

4.1 Bit size of p and various densities

In computational experiments, we generated 10 pri-
vate keys for each given input parameter (n, k, θ or f)
with k = ⌊√n⌋ and compared the average of bit size
of p, various densities d, κ [5] and D [6]. Because
maxi bi ≈ pr, we regard n/ log2 pr = d, k log2 n/ log pr =
κ and dH(k/n) = D, where H(x) := −x log2 x − (1 −
x) log2(1− x) is an entropy function. In Fig. 1, θ means
the quadratic field K = Q(

√
θ), f means the cubic field

K = Q[x]/(f [1]x3 + f [2]x2 + f [3]x + f [4]) and h means
the class number of the given field.

In Fig. 1, we see that the bit size of p grows big as the
discriminant and the class number of the field grow big
for imaginary quadratic fields. For real quadratic fields
and cubic fields, we can guess that there are many fields
with small p because there are many fields with class
number 1. We, however, could not make p small when
the discriminant is big.

In Fig. 2, we see that each density for real quadratic
fields is almost the same as that density for imaginary
quadratic fields. On the other hand, it is slightly low for
cubic fields. Furthermore, we can make density d enough
high with an appropriate choice of the parameters. But,
we can not make densities κ and D enough high because
k ≪ n. Therefore, it seems that there is an efficient
reduction from the generated knapsack problem to the
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Fig. 1. Comparison of the bit size of p.

lattice shortest vector problem [5,6]. In the next subsec-
tion, we discuss about this in detail.

4.2 Resistance against low-density attack

A Knapsack problem generated by OTU2000 is as fol-
lows: Given a set {b1, b2, · · · , bn} of public key and a
cipher text c =

∑n

i=1 mibi (mi ∈ {0, 1}), find the mi’s.
The reduced lattice problem from a knapsack prob-

lem is as follows: Given a lattice L spanned by v1, v2,
. . . , vn+1, find the shortest vector of L, where λ is an
integer larger than

√
n and

v1 = (1, 0, · · · , 0, λb1),

v2 = (0, 1, · · · , 0, λb2),

...

vn = (0, 0, · · · , 1, λbn),

vn+1 = (0, 0, · · · , 0, λc).

(6)

The idea of the low-density attack is that if we can
find the shortest vector of the lattice L, it may be the
solution of the knapsack problem, i.e. (m1, · · · ,mn, 0)
may be the shortest vector of L with high probability.
Here we use the type of lattice proposed by Lagarias and
Odlyzko [7] because k ≪ n.

In computational experiments, we generated 5 pub-
lic keys for each given input parameter (n, k, θ or f) and
chose 200 plain texts randomly for each key. After that,
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we computed cipher texts and created the corresponding
lattices as above. Furthermore, we applied LLL reduc-
tion algorithm [8] to these lattices. Then OTU2000 is
broken if the vector v = (m1, · · · ,mn, 0) belongs to the
LLL reduced basis. We also take λ = n and LLL pa-
rameters δ to 0.999 and η to 0.501. Below we show the
breaking rate of the attack with 1000 lattices.

From Fig. 3, we saw that the breaking rate decreases
as densities grow high when the size n is less than about
150. We have actually generated public keys when the
size n is up to 200. For these reduced lattice problems,
our experiments showed that LLL reduction can not find
the shortest vector if the size n exceeds 150.
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Fig. 3. Comparison of the breaking rate.

5. Conclusions and considerations

We proposed some propositions to implement OTU
2000 over real quadratic fields and cubic fields. Fur-
thermore, we showed experimental results about vari-
ous densities and estimated the resistance against low-
density attack. As a result, we saw that densities grew
high when the class number was small and the discrimi-
nant was small for real quadratic fields. A similar fact is
also observed at least for cubic fields we experimented.
These densities are slightly lower than those for imag-
inary quadratic fields with small class number. But it
is worth to use the case of real quadratic and cubic
fields with small class number. Because, for imaginary
quadratic fields, densities are low when the class number
is large, and there are only finitely many fields when the
class number is bounded.

In addition, the breaking rate by the low-density at-
tack decreases as densities grow high when the size n is
less than about 150. On the other hand, our experiment
shows that LLL algorithm can not find the shortest vec-
tor if the size n exceeds 150 regardless of the densities.
Hence, it seems that we should take a security parameter
n more than at least 150 to generate keys which have re-
sistance against low-density attack with LLL reduction.

The lower estimate (5) of p is not so sharp. To im-
prove the estimate is an important future problem. We
estimated resistance against low-density attack only us-
ing LLL reduction. Therefore, it is an important future
problem that we estimate resistance using BKZ reduc-
tion and other reductions. It will also be interesting to
study the case of number fields of higher degrees.
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