
JSIAM Letters Vol.2 (2010) pp.91–94 c©2010 Japan Society for Industrial and Applied Mathematics

Proposal and efficient implementation of multiple division

divide-and-conquer algorithm for SVD

Yutaka Kuwajima1, Youichiro Shimizu1 and Takaomi Shigehara1

1 Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-
ku, Saitama City, Saitama 338-8570, Japan

E-mail kuwa mail.saitama-u.ac.jp

Received March 31, 2010, Accepted May 15, 2010

Abstract

We propose a divide-and-conquer algorithm with multiple division for singular value decompo-
sition (SVD). The algorithm turns out to be efficient for reducing the execution time in the case
that the deflation occurrence rate of the input matrix is low, which is exactly the case that the
standard divide-and-conquer algorithm (DC2-SVD) with division number two requires O(n3)
arithmetic operations. Here n is the size of the input matrix. The comparison with DC2-SVD
as well as another up-to-date algorithm I-SVD is made through numerical experiment.

Keywords singular value decomposition, divide-and-conquer method, multiple division

Research Activity Group Algorithms for Matrix / Eigenvalue Problems and their Applications

1. Introduction

Consider the singular value decomposition (SVD) of
an upper-bidiagonal matrix B ∈ Rn×(n+1) with diago-
nals aj and subdiagonals bj (j = 1, . . . , n). The divide-
and-conquer algorithm with division number k = 2
(DC2-SVD) [1] is a well-established numerical algorithm
for this purpose. Although DC2-SVD keeps the numer-
ical accuracy at high level, the numerical cost of DC2-
SVD is not necessarily low, and it requires O(n3) arith-
metic operations in a general case such that the deflation
occurrence rate is low. To overcome this, we propose, in
this paper, the multiple division divide-and-conquer al-
gorithm (DCK-SVD) for SVD. DCK-SVD is an applica-
tion of multiple division divide-and-conquer algorithm
for a real symmetric tridiagonal eigenproblem [2,3], and
it can reduce the operation count to 3k/[2(k2−1)], com-
pared to DC2-SVD, where k (≪ n) is the division num-
ber in DCK-SVD. In numerical experiment, DCK-SVD
is compared with DC2-SVD in LAPACK [4] as well as
I-SVD [5], which is an up-to-date algorithm for SVD of
upper-bidiagonal matrices, introduced in a broad view of
applying the integrable systems to numerical computa-
tion.

2. Framework of DCK-SVD

Denote the set of l-dimensional real vectors and the
set of l1 × l2 real matrices by Rl and Rl1×l2 , respec-
tively. For simplicity, we assume that the column number
n + 1 of B is a multiple of the division number k (n + 1
= mk, m ∈ N). To save the space, we write down some
equations for k = 3. Generalization to general k is obvi-

ous. Let Il, e
(l)
j and 0l be the l-dimensional unit matrix,

its j-th column vector and l-dimensional zero vector, re-
spectively. Without loss of generality, we assume that B
is irreducible (bj 6= 0; j = 1, . . . , n) in the following. We
also assume that the singular values (SVLs) of B are

labeled in ascending order 0 < σ1 ≤ σ2 ≤ · · · ≤ σn.
We first divide B into k blocks in the obvious way as

B ≡

B1

αT
1 βT

1

B2

αT
2 βT

2

B3

∈ Rn×(n+1), (1)

where αi = amie
(m)
m , βi = bmie

(m)
1 (i = 1, . . . , k−1) and

Bi ∈ R(m−1)×m (i = 1, . . . , k). Suppose that we have
the SVD Bi = UiΣiV

T
i of Bi, where Σi = (Di,0m−1) ∈

R(m−1)×m with a diagonal matrix Di ∈ R(m−1)×(m−1),
and Ui ∈ R(m−1)×(m−1), Vi ∈ Rm×m are orthogonal
matrices. Then, we have B = U ′MV ′T , where

M ≡

Σ1

α′T
1 β′T

1

Σ2

α′T
2 β′T

2

Σ3

∈ Rn×(n+1) (2)

with α′
i = V T

i αi, β′
i = V T

i+1βi (i = 1, . . . , k − 1), and
{

U ′ ≡ {
⊕k−1

i=1 [Ui ⊕ (1)]} ⊕ Uk ∈ Rn×n,

V ′ ≡
⊕k

i=1 Vi ∈ R(n+1)×(n+1)
(3)

are orthogonal matrices. So, if we find the SVD M =
ÛΣV̂ T of M , we obtain the SVD B = UΣV T of B,
where U ≡ U ′Û , V ≡ V ′V̂ are orthogonal. The method
for computing the SVD of M is separately discussed later
in this section.

Since Bi (i = 1, . . . , k) has a form similar to B, the
SVD of Bi is obtained by a recursive usage of DCK-SVD,
in principle. In the present implementation, however, we
use the DC2-SVD routine DBDSDC in LAPACK for this
purpose.

The problem of finding the SVD of M in (2) is equiv-
alent to the positive semidefinite real symmetric eigen-

– 91 –

JSIAM Letters Vol. 2 (2010) pp.91–94 Yutaka Kuwajima et al.

problem of

MT M = D2 + SST ∈ R(n+1)×(n+1), (4)

where D ≡
⊕k

i=1[Di ⊕ (0)] is diagonal and S ∈
R(n+1)×(k−1) is determined from (2) in the obvious way.
The matrix in (4) has such a form as a diagonal matrix
plus low-rank perturbation, and its spectral decomposi-
tion can be obtained within O(n2) arithmetic operations
by the method in [3].

2.1 Singular values of M

If the perturbation is of rank one (k = 2), then the
eigenproblem for (4) is easily solved with high numerical
accuracy [6]. By repeating this procedure k − 1 times in
a general case, we first obtain the eigenvalues λj ≥ 0
of MT M , leading to the SVLs σj =

√

λj of M (j =
1, . . . , n).

2.2 Singular vectors of M

To obtain the eigenvectors of MT M , define

F (λ) ≡

(

F̃ (λ) ST W
WT S WT (λIn+1 − D2)W

)

, λ ∈ R (5)

with F̃ (λ) ≡ Ik−1−ST (In+1−WWT)(λIn+1−D2)−1S,

where W ≡ (e
(n+1)
i(1) , . . . , e

(n+1)
i(s)) with s distinct positive

integers i(1), . . . , i(s) equal to or less than n + 1. If λ
is an eigenvalue of MT M (λ = λj), the matrix F (λj)
becomes singular, and the eigenvector corresponding to
the eigenvalue λj of MT M (the right singular vector
(SVC) corresponding to the SVL σj of M) is given by

vj = [(In+1 − WWT)(λjIn+1 − D2)−1S,−W]xj (6)

with xj ∈ Ker F (λj) (xj 6= 0k+s−1). The computation
of xj is carried out by the inverse power method. On
the method for a choice of W in F (λj) for keeping the
numerical accuracy, see [3]. The left SVC corresponding
to the SVL σj is given by

uj = σ−1
j Mvj = σ−1

j [D̃vj + (e(n)
m , . . . , e

(n)
(k−1)m, O)xj]

(7)

with D̃ ≡ {
⊕k−1

i=1 [Di ⊕ (0)]} ⊕ Dk, where the second
equality follows from (5) and (6).

3. Technical notes on implementation

3.1 Removal of SVLs σ ≃ 0 of B

Since B is irreducible, B does not have zero SVL. How-
ever, it might have an arbitrarily tiny SVL in general.
Such tiny SVLs are largely removed by the following
procedure, where c1 is a small cut-off parameter.

1) By applying successive Givens transformations from
the right, B is reduced to an upper-bidiagonal form
with the zero vector in the last column. This corre-
sponds to RQ decomposition of B; B = RQr with
upper-bidiagonal matrix R ∈ Rn×(n+1) and orthog-
onal matrix Qr ∈ R(n+1)×(n+1).

2) Define R′ ∈ Rn×(n−1) by removing the first and the
last columns from R.

3) By applying successive Givens transformations from
the left, R′ is reduced to a lower-bidiagonal form

with the zero vector in the last row. This corre-
sponds to QL decomposition of R′; R′ = QlL

′ with
orthogonal matrix Ql ∈ Rn×n and lower-bidiagonal
matrix L′ ∈ Rn×(n−1).

4) Define

B̃ ≡ QT
l BQT

r =

(

B′ 0n−1

b̃n,1e
(n)T
1 0

)

∈ Rn×(n+1),

where B′ ∈ R(n−1)×n is upper-bidiagonal. In gen-
eral, fill-in might occur only in the bottom-left ele-
ment of B̃ by this procedure.

5) If |b̃n,1| < c1‖B‖F , set b̃n,1 = 0. Here ‖ · ‖F is the
Frobenius norm.

Repeating 1)–5) for the output B′ successively, we can
further remove tiny SVLs from B. Note that though the
smallness of the fill-in indicates the existence of a small
SVL for B, the converse is not true. As a result, all tiny
SVLs cannot be removed by the above procedure in gen-
eral.

3.2 Deflation

By using suitable permutation matrices Pu ∈ Rn×n

and Pv ∈ R(n+1)×(n+1), M in (2) is reduced to

M1 = PT
u MPv =

(

D′ O
ST

1 ST
2

)

∈ Rn×(n+1), (8)

where S1 ≡ (s
(1)
i,j) ∈ Rn1×(k−1), S2 ∈ Rk×(k−1) and

D′ ≡ diag(d′1, . . . , d
′
n1

) ∈ Rn1×n1 (0 < d′1 ≤ · · · ≤ d′n1
)

with n1 = n − k + 1. The SVD of M1 is essentially the
same as that of M . So we consider M1 in the following.

It is called deflation to remove the trivial solutions
in the SVD of M1 in (8) (equivalently the eigenprob-
lem of MT

1 M1 ∈ R(n+1)×(n+1)). First of all, MT
1 M1

has eigenvalue zero, that is removed as follows: By us-
ing QR decomposition S2 = Q2R2 with orthogonal ma-
trix Q2 ∈ Rk×k and upper-triangular matrix R2 =
(R′T

2 ,0k−1)
T ∈ Rk×(k−1), we have

M1(In1
⊕ Q2) =

(

D′ O 0n1

ST
1 R′T

2 0k−1

)

≡ (M2,0n).

Hence the (right) SVC corresponding to zero SVL of M1

is (0T
n1

, qT
2;k)T with the last column q2;k of Q2, and we

are left with M2. Deflation for M2 occurs when there
exists l (1 ≤ l ≤ n1) such that s

(1)
l,1 = · · · = s

(1)
l,k−1 = 0.

In this case, M2 has a SVL d′l with the corresponding

left and right SVCs e
(n)
l for both. If this condition is

satisfied n−r times, then by using suitable permutation
matrices Qu, Qv ∈ Rn×n, M2 is transformed to

QT
u M2Qv =

(

D′
1 O

S′T
1 R′T

2

)

⊕ D′
2 ≡ M3 ⊕ D′

2,

where D′
1 ∈ Rn2×n2 , D′

2 ∈ R(n−r)×(n−r) are positive
definite diagonal matrices with n2 = r − k + 1. Thus,
after the deflation, we are left with the r × r nontrivial
part M3. We call δ ≡ 1 − r/n the deflation occurrence

rate (DOR) in the following.
Note that the SVD of M1 also has a trivial solution

in case of d′j = d′j+1 = · · · = d′j+k−1 for some j (j =
1, . . . , n1 − k + 1). However, since it is rare that this

– 92 –

JSIAM Letters Vol. 2 (2010) pp.91–94 Yutaka Kuwajima et al.

condition is satisfied, we do not take into account this
type of deflation in the present implementation.

3.3 Left SVCs corresponding to σ ≃ 0

A direct usage of (7) for computing left SVCs for tiny
SVLs causes loss of numerical accuracy. In general, the
left SVC for a SVL σ of M3 is equivalent to the eigen-
vector associated with the eigenvalue σ2 of

M3M
T
3 =

(

D′2
1 D′

1S
′
1

S′T
1 D′

1 S′T
1 S′

1 + R′T
2 R′

2

)

∈ Rr×r.

Hence the left SVC of a tiny SVL σ can be found from
Ker (σ2Ir−M3M

T
3), that can be computed by a method

analogous to the method in Subsec. 2.2 for computing
the eigenvectors of a real diagonal matrix plus low-rank
perturbation.

3.4 SVCs corresponding to multiple SVLs

If l neighboring SVLs σj , σj+1, . . . , σj+l−1 for some j
(l = 2 in most cases) are close to each other, the com-
putation of kernels of F (σ2

j), F (σ2
j+1), . . . , F (σ2

j+l−1)
causes a serious loss of numerical accuracy. As a result,
the corresponding SVCs become nearly parallel to each
other. In this case, together with the average σ′

j of the
neighboring SVLs, these kernels are numerically approx-
imated by computing the eigenvectors corresponding to
the l smallest eigenvalues of F (σ′2

j), that are obtained
by applying the simultaneous inverse iteration with or-
thogonalization to F (σ′2

j).

3.5 Reorthogonalization

In the final stage in the computation of SVCs, we
need a reorthogonalization process, if necessary. When
we compute the inner products among SVCs, we use the
technique in [3], which makes it possible to complete the
computation of the inner products for all pairs of SVCs
within O(n2) arithmetic operations. According to the
results of the inner products, we divide the SVCs into
several groups, following the criteria:

• The number of groups is maximal under the condi-
tion that the following two conditions are satisfied.

• Both for left and right, the SVCs in each group are
orthogonal to those in other groups.

• For any pair of left and right SVCs in each group,
at least one of them is not orthogonal to some SVC
in the same group.

After grouping, we find the SVD of M3 restricted to the
subspaces spanned by the SVCs belonging to each group.
More precisely, let ũ1, . . . , ũl and ṽ1, . . . , ṽl be the left
and right SVCs belonging to one of the groups. Together
with orthonormal bases w1, . . . , wl of span(ũ1, . . . , ũl)
and z1, . . . , zl of span(ṽ1, . . . , ṽl), define

L ≡ (w1, . . . , wl)
T M3(z1, . . . , zl),

and compute the SVD

L = (p1, . . . , pl)Σ
′(q1, . . . , ql)

T

of L. Then
{

uj = (w1, . . . , wl)pj ,

vj = (z1, . . . , zl)qj

(j = 1, . . . , l)

give the reorthogonalized SVCs with high numerical pre-
cision.

4. DCK-SVD algorithm

From Secs. 2 and 3, we obtain the DCK-SVD algo-
rithm. In the main algorithm (proc dcksvd) below, proc
rksvd is a subroutine to compute the SVD M = ÛΣV̂ T

of M .

proc dcksvd(k, B, Σ, U , V)
Remove SVLs σ ≃ 0 from B by using the cut-off
parameter c1. (Subsec. 3.1)
Divide B as in (1).
for i = 1 to k

call dc2svd(Bi, Σi, Ui, Vi), where dc2svd is
the DBDSDC routine in LAPACK to compute
the SVD Bi = UiΣiV

T
i .

end for

call rksvd(k, M , Σ, Û , V̂).
Define U ′ and V ′ by (3).

Compute U ≡ U ′Û and V ≡ V ′V̂ .
return Σ, U , V

proc rksvd(k, M , Σ, Û , V̂)
Perform deflation. (Subsec. 3.2)
Compute σj (j = 1, . . . , n). (Subsec. 2.1)
Compute ûj , v̂j (j = 1, . . . , n). (Subsec. 2.2)
(If σj/σn < c2, then compute ûj following
Subsec. 3.3.)
for j = 1 to n − 1

l = 1
while j + l ≤ n and |(ûj , ûj+l)| > c3 do

l = l + 1
end while

if l ≥ 2 then

Compute the left SVCs
corresponding to σj , . . . , σj+l−1. (Subsec. 3.4)

end if

end for

for j = 1 to n − 1
l = 1
while j + l ≤ n and |(v̂j , v̂j+l)| > c3 do

l = l + 1
end while

if l ≥ 2 then

Compute the right SVCs
corresponding to σj , . . . , σj+l−1. (Subsec. 3.4)

end if

end for

Perform reorthogonalization, if necessary. (Subsec. 3.5)

return Σ, Û , V̂

5. Numerical experiment

Numerical environment is as follows: CPU: Intel Core
i7-960 3.2GHz, memory: 12GB, OS: Ubuntu Linux 9.10
(kernel 2.6.31), LAPACK: version 3.2.1, BLAS: ATLAS
version 3.6.0-22 Ubuntu2, and I-SVD: version 0.4.5. We
set the cut-off parameters to c1 = 8 × 10−16, c2 = 10−6

and c3 = 0.9 in DCK-SVD. We use DBDSDC routine in
LAPACK for DC2-SVD. For I-SVD, we use GotoBLAS2,
and DBDSLV routine is performed on a single thread.

– 93 –

JSIAM Letters Vol. 2 (2010) pp.91–94 Yutaka Kuwajima et al.

Test matrices are the following three types:

• L-DOR: Upper-bidiagonal matrix B = (0n, BL) ∈
Rn×(n+1) with BL ∈ Rn×n such that T − λmin(T)
In = BLBT

L , where T is the real symmetric tridiag-
onal matrix obtained by tridiagonalizing a real sym-
metric dense matrix with normal random numbers
of mean 0 and variance 1 in elements, and λmin(T)
is the minimum eigenvalue of T . L-DOR is based
on a physical model which shows so-called quantum
chaos [7].

• H-DOR1: aj (j = 1, . . . , n) are uniform random
numbers in the interval (−2, 2], while bj (j =
1, . . . , n) are uniform random numbers in the in-
terval (−1, 1].

• H-DOR2: aj and bj (j = 1, . . . , n) are uniform
random numbers in the interval (−1, 1].

Matrix size is n = 5000. On the execution time as well
as numerical errors, we take an average of 16 examples
for each type. The DOR is low (δ = 0) for L-DOR, while
the other two have high DORs (δ = 0.92 for H-DOR1
and δ = 0.95 for H-DOR2, on average).

Figs. 1 and 2 show the dependence of execution time
by DCK-SVD on the division number k for L-DOR and
H-DOR1, respectively. For comparison, the execution
times by DC2-SVD and I-SVD are also shown. For L-
DOR, the DOR is low and as a result, a large division
number is preferable in DCK-SVD. With the optimal
division number k = 32, DCK-SVD (11.4 sec) is faster
than DC2-SVD (32.5 sec) and I-SVD (15.8 sec). For H-
DOR1, the DOR is high and as a result, the small di-
vision number is preferable in DCK-SVD. The optimal
division number is k = 8, with which the execution time
(2.35 sec) by DCK-SVD is comparable to that (2.74 sec)
by DC2-SVD. The execution time (13.8 sec) by I-SVD
does not depend on the DOR largely. H-DOR2 has also
a high DOR, and the dependence of execution time by
DCK-SVD on the division number k is the same as in
Fig. 2. The execution time by DCK-SVD is 4.30 sec with
the optimal division number k = 4, while the execution
times by DC2-SVD and I-SVD are 2.86 sec and 14.6 sec,
respectively. Table 1 shows orthogonal errors

ǫOU = max
1≤i≤n

‖UT ui − e
(n)
i ‖2,

ǫOV = max
1≤i≤n+1

‖V T vi − e
(n+1)
i ‖2

for left and right SVCs as well as the residual

ǫR = max
1≤i≤n

‖Bui − σivi‖2

‖B‖2
,

when L-DOR, H-DOR1 and H-DOR2 are solved by
DCK-SVD, DC2-SVD and I-SVD, respectively. For
DCK-SVD, we use the optimal division number for each
type. Table 1 shows that DCK-SVD has almost the same
numerical accuracy as I-SVD.

In case of H-DOR2 of matrix size n = 3000, 4000, we
observed several cases that tiny SVLs induce the orthog-
onal errors beyond O(10−11). In all cases, however, they
are suppressed below O(10−11) by adjusting the value of
c1 in the range c1 ∈ [8 × 10−16, 5 × 10−11], according to
the input matrices.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 20 40 60 80 100 120

T
im

e
 [

se
c
]

Division Number k

DCK-SVD
DC2-SVD

I -SVD

Fig. 1. Dependence of execution time for L-DOR on the division

number k in DCK-SVD.

 0

 2

 4

 6

 8

 10

 12

 14

 2 10 20 30 40 50 60

T
im

e
 [

se
c
]

Division Number k

DCK-SVD
DC2-SVD

I -SVD

Fig. 2. Dependence of execution time for H-DOR1 on the divi-
sion number k in DCK-SVD.

Table 1. Numerical errors.

L-DOR ǫOU ǫOV ǫR

DCK-SVD 1.17E−12 1.17E−12 1.27E−13

DC2-SVD 1.13E−14 1.55E−14 5.92E−15

I-SVD 2.54E−12 2.54E−12 1.26E−14

H-DOR1 ǫOU ǫOV ǫR

DCK-SVD 8.60E−13 4.17E−13 1.03E−13

DC2-SVD 4.55E−15 4.00E−15 9.14E−15

I-SVD 8.25E−13 8.25E−13 8.47E−15

H-DOR2 ǫOU ǫOV ǫR

DCK-SVD 2.74E−13 2.23E−13 3.10E−14

DC2-SVD 4.07E−15 4.14E−15 9.00E−15

I-SVD 1.68E−12 1.60E−12 9.71E−13

Acknowledgments

We are grateful to the anonymous referee for helpful
comments, which served to improve the quality of this
paper. This work was partially supported by Grant-in-
Aid for Scientific Research (C) No.19560058.

References

[1] M. Gu, J. Demmel and I. Dhillon, Efficient computation of the
singular value decomposition with applications to least squares
problems, Tech.Rep., UT-CS-94-257, Univ. of Tennessee, 1994.

[2] Y. Kuwajima and T. Shigehara, An extension of divide-
and-conquer for real symmetric tridiagonal eigenproblem (in
Japanese), Trans. JSIAM, 15 (2005) 89–115.

[3] Y. Kuwajima and T. Shigehara, An improvement of multi-
ple division divide-and-conquer for real symmetric tridiagonal
eigenproblem (in Japanese), Trans. JSIAM, 16 (2006) 453–480.

[4] E. Anderson et al., LAPACK Users’ Guide, Third Edition,
SIAM, Philadelphia, 1999.

[5] H. Toyokawa, K. Kimura, M. Takata and Y. Nakamura, On
parallelism of the I-SVD algorithm with a multi-core processor,
JSIAM Letters, 1 (2009) 48–51.

[6] M. Gu and S. C. Eisenstat: A divide-and-conquer algorithm

for the symmetric tridiagonal eigenproblem, SIAM J. Matrix
Anal. Appl., 16 (1995) 172–191.

[7] M. L. Mehta, Random Matrices, Third Edition, Pure and Ap-
plied Mathematics, 142, Elsevier/Academic Press, 2004.

– 94 –

