
JSIAM Letters Vol.3 (2011) pp.29–32 c⃝2011 Japan Society for Industrial and Applied Mathematics

Approximation algorithms for a winner determination

problem of single-item multi-unit auctions

Satoshi Takahashi1 and Maiko Shigeno1

1 Graduate School of System and Information Systems, University of Tsukuba, Tsukuba, Ibaraki
305-8573, Japan

E-mail stakahashi sk.tsukuba.ac.jp

Received September 30, 2010, Accepted January 13, 2011

Abstract

This paper treats a winner determination problem of a Vickrey-Clarke-Groves mechanism
based single-item multi-unit auction. For this problem, two simple 2-approximation algorithms
are proposed. One is a linear time algorithm using a linear knapsack problem. The other is
a greedy type algorithm. In addition, a fully polynomial time approximation algorithm based
on a dynamic programming is described. Computational experiments verify availabilities of
our algorithms by comparing computational times and approximation ratios.

Keywords auction theory, winner determination, approximation algorithm

Research Activity Group Discrete Systems

1. Introduction

Recent Internet auctions with huge participators re-
quire to compute an optimal allocation and payments
as quick as possible. A winner determination problem
on auction theory consists of an item allocation problem
and a payment determination problem, which depends
on an auction mechanism. One of the most desirable auc-
tion mechanisms is due to Vickrey, Clarke and Groves,
which is called VCG [1]. Throughout this paper, we con-
sider only VCG based auctions. Winner determination
problems of VCG based auctions are known asNP-hard.
Therefore, it is important to consider fast approxima-
tion algorithms for a winner determination problem in
the Internet auction environment.
We treat single-item multi-unit auctions, where a

seller who wants to sell M units of a single item and n
bidders participate. Each bidder i submits sets of anchor
values {dki | k = 0, . . . , ℓi} and of unit values {eki | k = 1,
. . . , ℓi}, where anchor values satisfy dk−1

i < dki for any
0 < k ≤ ℓi and eki implies a unit value over half-open
range (dk−1

i , dki] of item quantity. Without loss of gen-

erality, we assume that d0i = 0 and dℓii ≤ M for every
bidder i. Let N = {1, . . . , n} be a set of bidders and
ℓ =

∑
i∈N ℓi. We define a value function vi : R+ → R of

bidder i by

vi(x) =

{
eki · x (dk−1

i < x ≤ dki , k = 1, . . . , ℓi),

0 (x = d0i or x > dℓii).

Our item allocation problem (AP) is to find each quan-
tity xi that bidder i gets such that the total valuation is
maximized. It is formulated as

(AP) maximize
∑

i∈N vi(xi)
subject to

∑
i∈N xi ≤ M, xi ≥ 0 (∀i ∈ N).

Denoted by x⋆, an optimal solution for (AP) is. We say
that a solution for (AP) satisfies an “anchor property” if

there are at least n− 1 bidders whose getting quantities
are given by their anchor values.

Lemma 1 ([2]) A problem (AP) has an optimal so-
lution satisfies the anchor property, when every bidder’s
unit values are monotone non-increasing for k.

To compute a payment of bidder j, we need to solve a
restricted problem excepting j from bidders. Let N−j =
N \ {j} and x−j be an optimal solution of an item allo-
cation problem under the set N−j , that is,

maximize
∑

i∈N−j vi(xi)
subject to

∑
i∈N−j xi ≤ M, xi ≥ 0 (∀i ∈ N−j).

On a VCG based auction, a payment pj of bidder j is
defined by

pj =
∑

i∈N−j vi(x
−j
i)−

∑
i∈N−j vi(x

⋆
i). (1)

We now review briefly approximation algorithms for
a winner determination problem of single-item multi-
unit auctions. With respect to constant-factor approx-
imations for (AP), Kothari, Parkes and Suri [2] pro-
posed a 2-approximation algorithm with O(ℓ2) time for
the so-called generalized knapsack problem which mod-
els an item allocation problem in reverse auction. When
their greedy algorithm is applied to (AP) directly, it re-
turns a solution whose approximation ratio may not be
bounded by two. Zhou [3] said that he improved this al-
gorithm to run in O(ℓ log ℓ) time. Moreover, he showed a
3-approximation algorithm with O(ℓ) time and a (9/4)-
approximation algorithm with O(ℓ log ℓ) time for the so-
called interval multiple-choice knapsack problem whose
special case is (AP). According to [3], it is an open prob-
lem to compute a 2-approximation of (AP) in linear
time. With respect to fully polynomial time approxima-
tion schemes (FPTAS) for a winner determination prob-
lem, Kothari, Parkes and Suri [2] proposed the first one
which is based on dynamic programming and uses the

– 29 –

JSIAM Letters Vol. 3 (2011) pp.29–32 Satoshi Takahashi et al.

anchor property. It finds a solution with an approxima-
tion ratio at most (1+ ϵ) for (AP) in O(nℓ2/ϵ) time and
calculates every bidders’ payment in O((nℓ2/ϵ) log(n/ϵ))
time. In order to solve (AP), their algorithm repeats fix-
ing a specified bidder j and index 0 < k ≤ ℓj , and solving
the problem (AP) adding a constraint dk−1

j < xj ≤ dkj .
This FPTAS was improved by Zhou [3]. His algorithm
does not repeat to compute (AP) with an additional
constraint. Thus, Zhou’s FPTAS solves a winner deter-
mination problem in O((nℓ/ϵ) log(n/ϵ)) time. Moreover,
by employing a technique of vector merge, he say that
his algorithm can run in O((nℓ/ϵ) log n) time. However,
a solution found by his algorithm may not satisfy the
anchor property.
In the next section, we propose two 2-approximation

algorithms for solving (AP). One is an O(ℓ) algorithm,
which gives a positive answer to the open problem in
[3]. The other is an O(ℓ(log n + ℓmax)) algorithm based
on greedy method improved from [2], where ℓmax =
maxi∈N ℓi. We also describe an FPTAS for solving a win-
ner determination problem in O((nℓ/ϵ) log(n/ϵ)) time,
which finds a solution satisfying the anchor property.
Section 3 shows computational experiments comparing
performances of proposed algorithms.

2. Approximation algorithms

This section proposes simple 2-approximation algo-
rithms for (AP) and an FPTAS that is modified version
of Zhou’s algorithm [3] for a winner determination prob-
lem to obtain a solution satisfying the anchor property.

2.1 2-approximation algorithms for item allocation
problems

We propose two 2-approximation algorithms for (AP).
One is based on Dyer’s polynomial time algorithm [4] for
linear knapsack problem:

(LKP) maximize
∑

i∈N

∑ℓi
k=0(e

k
i d

k
i)y

k
i

subject to
∑

i∈N

∑ℓi
k=0 d

k
i y

k
i ≤ M,∑ℓi

k=0 y
k
i = 1 (∀i ∈ N),

yki ≥ 0 (∀i ∈ N, ∀k = 0, . . . , ℓi),

where, for any i ∈ N , e0i is given by an arbitrary value.

Lemma 2 The optimal value of (LKP) gives an upper
bound of (AP).

Proof For a feasible solution x of (AP), we can con-
struct a feasible solution y for (LKP) by setting, if there
exists an index ki with dki−1

i < xi ≤ dki
i ,

yki =

 xi/d
ki
i (k = ki),

0 (k > 0, k ̸= ki),

1− xi/d
ki
i (k = 0),

and, otherwise, yki =

{
1 (k = 0),
0 (k ̸= 0).

The objective values of these solutions x and y satisfy∑
i∈N

∑ℓi
k=0(e

k
i d

k
i)y

k
i =

∑
{i∈N |0<xi≤d

ℓi
i } e

ki
i xi

=
∑

i∈N vi(xi).

Hence, the optimal value of (LKP) is not less than the
optimal value of (AP).

(QED)

With respect to a feasible solution y of (LKP), we call
an index i as saturated if yki = 1 holds for some k. It is
known that there exists an optimal solution for (LKP)
with at most one unsaturated index. Let y∗ be such an
optimal solution and i∗ be the unsaturated index. From
y∗, we construct two solutions of (AP) by setting

x̂i =

{ ∑ℓi
k=0 d

k
i y

∗k
i (i ̸= i∗),

0 (i = i∗),
(2)

and x̃i =

{
0 (i ̸= i∗),

dk̃i
i (i = i∗),

(3)

where k̃i is an index attaining max0<k≤ℓi e
k
i d

k
i . Obvi-

ously, both solutions x̂ and x̃ are feasible for (AP).
Moreover, we have∑

i∈N

∑ℓi
k=0 e

k
i d

k
i y

∗k
i

=
∑

i∈N−i∗
∑ℓi

k=0 e
k
i d

k
i y

∗k
i +

∑ℓi∗
k=0 e

k
i∗d

k
i∗y

∗k
i∗

≤
∑

i∈N vi(x̂i) +
∑

i∈N vi(x̃i)

≤ 2 ·max{
∑

i∈N vi(x̂i),
∑

i∈N vi(x̃i)}. (4)

Our approximation algorithm can be described as fol-
lows.

Algorithm AA1

Step 1 Find an optimal solution y∗ of (LKP) with at
most one unsaturated index i∗.

Step 2 From y∗, get two feasible solutions x̂ and x̃
by (2) and (3). If

∑
i∈N vi(x̂i) ≥

∑
i∈N vi(x̃i), then

return x̂, otherwise, return x̃.

Theorem 3 Algorithm AA1 finds a 2-approximation
solution for (AP) in O(ℓ) time.

Proof Lemma 2 and inequality (4) derive our approx-
imation ratio. Because (LKP) can be solved in linear
time [4], we obtain our time complexity.

(QED)

Since Algorithm AA1 runs in linear time, it gives a pos-
itive answer to the open problem, which in [3].
We now turn to the other 2-approximation algorithm

that is greedy type. Our algorithm uses sloop functions
pki : R → R, for i ∈ N and 0 < k ≤ ℓi, given by a gradi-
ent of the value function vi between a current allocated
unit x and each anchor value dki , i.e.,

pki (x) = (vi(d
k
i)− vi(x))/(d

k
i − x).

We describe our greedy type algorithm as follows.

Algorithm AA2

Step 1 Set xi = 0 for any i ∈ N .

Step 2 Find a pair (i∗, k∗) such as pk
∗

i∗ (xi∗) = max{
pki (xi) | i ∈ N, xi < dki }. If pk

∗

i∗ (xi∗) ≤ 0, then
return x, otherwise, update xi∗ = dk

∗

i∗ .

Step 3 If
∑

i∈N xi < M , go to Step 2.

Step 4 Make two solutions x̂ and x̃ by

x̂i =

{
xi (i ̸= i∗),
M −

∑
j ̸=i∗ xj (i = i∗),

– 30 –

JSIAM Letters Vol. 3 (2011) pp.29–32 Satoshi Takahashi et al.

and x̃i =

{
0 (i ̸= i∗),
xi∗ (i = i∗).

If
∑

i∈N vi(x̂i) >
∑

i∈N vi(x̃i), then return x̂, oth-
erwise, return x̃.

Theorem 4 Algorithm AA2 finds a 2-approximation
solution of (AP) in O(ℓ(log n+ ℓmax)) time, where ℓmax

= maxi∈N ℓi.

Proof When AA2 stops at Step 2, we can show that
the returned solution is an optimal for (AP). When AA2
stops at Step 4, for a solution x at the end of AA2, let
M ′ =

∑
i∈N xi. It can be shown that the solution x is

optimal for

maximize
∑

i∈N vi(xi)
subject to

∑
i∈N xi ≤ M ′, xi ≥ 0 (∀i ∈ N).

Since x⋆ is also feasible for the above problem, we have∑
i∈N vi(x

⋆
i) ≤

∑
i∈N vi(xi). It comes from the defini-

tions of x̂ and x̃ that
∑

i∈N vi(xi) ≤
∑

i∈N vi(x̃i) +∑
i∈N vi(x̂i) holds. Thus, we obtain the desired approx-

imation ratio.
It is clear that the number of iteration of AA2 is at

most ℓ. If we store max{pki (xi) | xi < dki } for all i ∈ N
in a heap, Step 2 can be performed in O(logn). After
Step 2, we need to compute max{pki∗(xi∗) | xi∗ < dki∗}
for updated xi∗ , which runs in O(ℓi∗). Hence, the total
running time is bounded by O(ℓ(log n+ ℓmax)).

(QED)

2.2 FPTAS for winner determination problems

We show a modified version of Zhou’s algorithm [3]
such that it finds a solution satisfying the anchor prop-
erty, when every bidder’s unit values satisfy ek−1

i ≥ eki
for all 1 ≤ k ≤ ℓi. Let ϵ > 0 be a relative error and V be
an objective value obtained by a 2-approximation algo-
rithm. We define a scaled value function ṽi : R+ → R of
bidder i by

ṽi(x) = ⌊(n · vi(x))/ϵ · V ⌋.

We denote an item allocation problem over this scaled
value function by (ÃP). For an optimal solution x of

(ÃP), we have∑
i∈N vi(x

⋆
i) <

∑
i∈N (ϵV/n)(ṽi(x

⋆
i) + 1)

≤
∑

i∈N (ϵV/n)ṽi(xi) + ϵV

≤
∑

i∈N vi(xi) + ϵ
∑

i∈N vi(x
⋆
i).

Thus, an optimal solution for (ÃP) is a solution with
a relative error at most ϵ for (AP). In order to solve

(ÃP) by dynamic programming, for two parameters t
and r, the value min{

∑t
i=1 xi |

∑t
i=1 ṽi(xi) ≥ r} is

stored in G[t, r] and H[t, r], where in G[t, r] each xi

is restricted to an anchor value, and in H[t, r] each
xi except only one bidder is restricted to an anchor
value. An optimal solution of (ÃP) is obtained from a
solution x[n,r∗] establishing H[n, r∗], where r∗ attains

maxr{
∑

i∈N ṽi(x
[n,r]
i) | H[n, r] ≤ M}. In order to ob-

tain r∗, it is enough to search H[n, r] for r from 0 to

⌊(2n)/ϵ⌋, since the optimal value of (ÃP) is bounded by
⌊(2n)/ϵ⌋. Thus, our algorithm finds an optimal solution

for (ÃP) by computing H[t, r] recursively, together with
G[t, r], for r = 0, . . . , ⌊(2n)/ϵ⌋ and t = 0, . . . , n. It is
obvious that we can initialize G[0, 0] = H[0, 0] = 0 and
G[0, r] = H[0, r] = ∞ for any r > 0. For convenience,
we set G[t, r] = H[t, r] = ∞ for any t ∈ N and r < 0.
By recursively, we can represent

G[t, r] = min{G[t−1, r],min
k

(G[t−1, r − ṽt(d
k
t)] + dkt)}.

Defining m[t, r] by

min
0≤r′≤r

{min{xt | ṼG[t−1, r′]+ṽt(xt) ≥ r}+G[t−1, r′]},

where ṼG[t − 1, r′] is the value
∑t−1

i=1 ṽi(xi) for a solu-
tion x that establishes G[t−1, r′], we have the following
recurrence for H:

H[t, r] = min{H[t−1, r],

mink(H[t−1, r− ṽt(d
k
t)]+dkt),m[t, r]}.

In m[t, r], we can rewrite min{xt | ṼG[t−1, r′]+ ṽt(xt) ≥
r} by

min{xt | ⌊nekt xt/ϵV ⌋ ≥ r−ṼG[t−1, r′], dk−1
t < xt≤ dkt }.

(5)

Since r−ṼG[t−1, r′] is an integer, the smallest xt satisfies
the first condition in (5) is given by (r− ṼG[t−1, r′])/ekt ·
(ϵV/n). Thus (5) is equivalent to

mink{(r − ṼG[t− 1, r′])/ekt · (ϵV/n)
| dk−1

t < (r − ṼG[t− 1, r′])/ekt · (ϵV/n) ≤ dkt }.

By using this formula, the values m[t, r] for all r = 1,
. . . , ⌊(2n)/ϵ⌋ can be found simultaneously in O((nℓi/ϵ)
log(n/ϵ)) time. After obtaining the values of m[t, r] for
all r = 1, . . . , ⌊(2n)/ϵ⌋, we can compute each G[t, r] and
H[t, r] in O(ℓi) time. Therefore we obtain entire elements
of G and H in O((nℓ/ϵ) log(n/ϵ)) time.
Finally, we compute each bidder’s payment defined by

(1) by employing the method of Kothari, Parkes and Suri
[2]. In their method, all payments can be computed in
the same time complexity to obtain G and H.

Theorem 5 Our algorithm finds a solution with a rel-
ative error at most ϵ of (AP) in O((nℓ/ϵ) log(n/ϵ)) time.
It also finds every payment in the same time complexity.

If a vector merge technique by [3] is applied, our
algorithm solves a winner determination problem in
O((nℓ/ϵ) log n) time.

3. Experimental results

This section shows computational results of algo-
rithms described in Section 2. All computations were
conducted on a personal computer with Core2 Duo CPU
(3.06GHz) and 4GB memory. Our code was written by
python2.6.5. For given numbers of bidders n and of units
M , all instances used in this experiment were generated
using random numbers. The number of anchor values ℓi
for each bidder i was selected uniformly from integers
within the interval [1, 15]. Every unit value eki and an-
chor value dki were selected uniformly from integers in
[1, 100] and in [1,M], respectively.
Table 1 shows averages of computational times and

– 31 –

JSIAM Letters Vol. 3 (2011) pp.29–32 Satoshi Takahashi et al.

Table 1. Averages of computational times and of approximation ratios of 2-approximation algorithms for ten instances of each (n,M).

instance comp. times (sec.) app. ratios instance comp. times (sec.) app. ratios

(n,M) AA1 AA2 AA1 AA2 (n,M) AA1 AA2 AA1 AA2

(10, 200) 0.00460 0.00119 1.873 1.093 (10, 50) 0.00388 0.00101 1.299 1.251
(50, 200) 0.01171 0.00409 1.736 1.244 (10, 100) 0.00314 0.00102 1.458 1.296

(100, 200) 0.02331 0.00768 1.505 1.195 (10, 200) 0.00460 0.00119 1.873 1.093
(200, 200) 0.04721 0.01440 1.673 1.429 (50, 50) 0.01237 0.00392 1.398 1.485
(400, 200) 0.09666 0.02869 1.492 1.399 (50, 100) 0.01430 0.00390 1.356 1.371
(800, 200) 0.19884 0.05754 1.559 1.316 (50, 200) 0.01171 0.00409 1.736 1.244

(1000, 200) 0.25427 0.06933 1.749 1.639 (100, 50) 0.02468 0.00755 1.831 1.206
(5000, 200) 1.84318 0.34113 1.550 1.328 (100, 100) 0.02401 0.00737 1.566 1.618
(10000, 200) 5.08805 0.72498 1.548 1.609 (100, 200) 0.02331 0.00768 1.505 1.195

Table 2. Averages of computational times (sec.) and relative er-
rors of our FPTAS for ten instances with n = 10 and M = 50.

epsilon
comp. times (sec.) relative errors
AA1 AA2 AA1 AA2

1.0 0.27925 0.66331 0.057 0.038

0.9 0.32014 0.78129 0.038 0.037
0.8 0.40650 0.98921 0.041 0.047
0.7 0.49900 1.20912 0.042 0.034
0.6 0.67769 1.66427 0.026 0.021

0.5 0.92052 2.26631 0.037 0.021
0.4 1.42961 3.50712 0.024 0.001
0.3 2.54312 6.25542 0.014 0.001
0.2 5.59242 13.77336 0.012 0.004

0.1 22.06652 54.52771 0.007 0.003

approximation ratios of two 2-approximation algo-
rithms, Algorithm AA1 and Algorithm AA2, for ten in-
stances of each size. Algorithm AA1 was implemented
so that its time complexity was O(ℓ log ℓ), since we em-
ployed a sorting algorithm instead of linear-time median
finding in Dyer’s algorithm for (LKP). It is consistent
with the theoretical complexities that resulting compu-
tational times depend on n but not M . On the other
hand, Algorithm AA2 is faster than Algorithm AA1 in
the average times, because our instances seem not to
derive worst cases. Approximation ratios of both algo-
rithms seem not to be affected by sizes of n and M . In
our results, Algorithm AA2 tended to have better aver-
age approximation ratio than Algorithm AA1. This ten-
dency was influenced by a few solutions with bad approx-
imation ratios. At the end of both algorithms Algorithm
AA1 and Algorithm AA2, they choose a solution x̂ or
x̃. Among 150 instances of this experiment, Algorithm
AA1 returned a solution x̃ in 89 instances and Algorithm
AA2 returned x̃ in 23 instances. Indeed, a solution given
by x̃, which was returned by Algorithm AA2 especially,
did not have so good approximation ratio, because it
allocated almost all units to only one bidder. This fact
seems to affect evaluations of approximation ratios.
The second experiment evaluated behavior of our FP-

TAS described in Subsection 2.2 to solve a problem
(AP). We investigated influence of a given relative er-
ror ϵ on computational times and on obtained relative
errors. In addition, we compared performance of our
FPTAS where the value V is given by Algorithm AA1
and Algorithm AA2, respectively. Table 2 shows aver-
ages of computational times and of relative errors for
ten instances fixed with n = 10 and M = 50. In our
result, while the case using Algorithm AA1 spent less
times on computing than the case using Algorithm AA2,

the latter frequently returned solutions with better rela-
tive errors than the former, which derived from the fact
that Algorithm AA2 tended to return a greater value V
than Algorithm AA1. Although the theoretical complex-
ity does not depend on V , we say there is a difference
of average computational times between the cases us-
ing Algorithm AA1 and Algorithm AA2. This difference
comes from each computational time of m[t, r]. By using
Algorithm AA2, our FPTAS returned almost optimal so-
lutions, when ϵ is less than 0.4. However, the returned
allocations were different from optimal.

4. Concluding remarks

For winner determination problems of a VCG based
single-item multi-unit auction, we proposed two 2-
approximation algorithms for item allocation problems.
One runs in the linear time, which gives a positive an-
swer to the open problem in [3]. The other does not run
in the linear time, but it computes fast in some experi-
ments. We also discussed an FTPAS, which returned an
approximation solution satisfying the anchor property.
When some bidders know all bids and can compute op-

timal allocations and payments, they may not approve
an approximate solution whose allocations and pay-
ments are entirely different from optimal ones. To ap-
prove approximate solutions in real auctions, we need
some rules about allocations. For instance, Fukuta and
Ito [5] discussed a rule that bidder j is allocated no more
than an allocation of bidder i if vi(d) > vj(d) for some
anchor value d. It is our future work to develop an ap-
proximation algorithm for finding an allocation satisfy-
ing this rule.

References

[1] P. Milgrom, Putting Auction Theory to Work, Cambridge
Univ. Press, 2004.

[2] A. Kothari, D. C. Parkes and S. Suri, Approximately-
strategyproof and tractable multiunit auctions, Decision Sup-

port System, 39 (2005), 105–121.
[3] Y. Zhou, Improved multi-unit auction clearing algorithms

with interval (multiple-choice) knapsack problems, in: Proc.
of 17th Int. Sympo. on Algorithms and Computation, pp. 494–

506, 2006.
[4] M. E. Dyer, An O(n) algorithm for the multiple-choice knap-

sack linear program, Math. Program., 29 (1984), 57–63.

[5] N. Fukuta and T. Ito, An analysis about approximated allo-
cation algorithms of combinatorial auctions with large num-
bers of bids (in Japanese), IEICE Trans. D, J90-D (2007),
2324–2335.

– 32 –

