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Abstract

In 2004, Akiyama and Goto proposed an algebraic surface public-key cryptosystem (ASC04)
which is based on the hardness of finding sections on fibered algebraic surfaces. In 2007,
Uchiyama and Tokunaga gave an efficient attack, which is called the reduction attack, against
ASC04 under some condition of a public-key of the scheme. In 2008, Iwami proposed its
improved attack. In this paper, we point out a flaw in Iwami’s attack and propose a generalized
reduction attack. The attack is based on Iwami’s attack, and the flaw is fixed. We also discuss
our experiments of the attack.
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Gröbner basis, elimination ideal

Research Activity Group Algorithmic Number Theory and Its Applications

1. Introduction

In 1994, Shor proved that the integer factorization
problem and the discrete logarithm problem can be
solved in probabilistic polynomial time by using quan-
tum computers [1]. Thus, once a quantum computer is
realized, public-key cryptosystems based on them would
not be secure. For this reason, cryptographic schemes
which are expected to have resistance against quantum
computers have been researched actively [2]. Algebraic
surface public-key cryptosystems (ASCs for short) [3,4],
proposed by Akiyama and Goto, is one of the candidates
for such schemes. ASC is based on the hardness of find-
ing sections on fibered algebraic surfaces. This problem
is called the section finding problem (SFP for short).
SFP is the following problems. (Let k := Fp be a finite
prime field of p elements.)
Let X(x, y, t) = 0 be an algebraic surface over k, the

problem is to find two polynomials ux(t), uy(t) ∈ k[t]
such that X(ux(t), uy(t), t) = 0.
Two of the authors, Uchiyama and Tokunaga, pro-

posed an efficient attack, which is called the reduction
attack, against the ASC04 (which is the first imple-
mentation of ASC proposed in 2004) in 2007 [5]. They
make use of some fundamental properties of Gröbner
basis. The correctness of the reduction attack can be
proven under a certain condition of the leading term of
a public-key X(x, y, t) with respect to a monomial order
in k[x, y, t]. Moreover, Ivanov and Voloch proposed a so-
called trace attack in 2008 [6]. Then, Iwami proposed an
improved reduction attack [7]. In this paper, we point
out a flaw in Iwami’s scheme, and propose a generalized
reduction attack against the ASC04. The attack is based
on Iwami’s attack, and the flaw is fixed by our proposal.
The correctness of our proposed attack is proven without

any conditions. Moreover, we discuss our experiments of
the proposed attack.

2. ASC04

In this section, we briefly review the ASC04. See [3]
for the detail.

2.1 Secret-Key

Two different curves D1 and D2 parameterized with t
in A3(k):

D1 : (x, y, t) = (ux(t), uy(t), t),

D2 : (x, y, t) = (vx(t), vy(t), t).

2.2 Public-Key

• Algebraic Surface X:
X(x, y, t) :=

∑
(i,j)∈ΛX

cij(t)x
iyj = 0 (∈ k[x, y, t])

(ΛX := {(i, j) ∈ (Z≥0)
2 | cij(t) ̸= 0}) satisfying

X(ux(t), uy(t), t) = X(vx(t), vy(t), t) = 0.

• l: an integer satisfying the following condition.
degt X(x, y, t) < l, and l is the minimum degree of
a monic irreducible polynomial f(t) ∈ k[t] given for
encryption.

• d: an integer satisfying the following condition.

d ≥ max{deg ux(t), deg uy(t), deg vx(t), deg vy(t)}.

2.3 Encryption

Divide a plaintext m into l blocks as m = m0||m1||
· · · ||ml−1 and embed mi (0 ≤ mi < p (i = 0, . . . , l − 1))
within coefficients of a plaintext polynomial m(t) ∈ k[t].
Choose a monic irreducible polynomial f(t) ∈ k[t] of

degree greater than or equal to l and randomly choose
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Table 1. Reduction attack.

Input: Public-Key X ∈ k[x, y, t], Ciphertext F ∈ k[x, y, t].
Output: Plaintext m corresponding to ciphertext F (x, y, t).

1. Find the remainder R1 ∈ k[x, y, t] by dividing F by X.
2. Randomly choose some terms of R1 with cij(t)x

iyj ((i, j) ̸=
(0, 0), cij(t) ̸∈ k), and let its coefficients cij(t) be C(⊂ k[t]).

3. Factorize elements of a set C, and let the set of irreducible
factors of degree l or more be G(⊂ k[t]).

4. Choose g ∈ G, and find the remainder n ∈ k[t] by dividing
R1 by g. If n ̸∈ k[t], we choose another g ∈ G.

5. Let n(t) = nk−1t
k−1 + · · · + n1t + n0 ∈ k[t], and compute

m = n0||n1|| · · · ||nk−1.

two polynomials r(x, y, t), s(x, y, t) ∈ k[x, y, t] with some
conditions about its degree. The ciphertext F (x, y, t) ∈
k[x, y, t] is defined as follows:

F (x, y, t) := m(t) + f(t)s(x, y, t) +X(x, y, t)r(x, y, t).

2.4 Decryption

Substituting sectionsD1,D2 into F (x, y, t), we obtain:

h1(t) := F (ux(t), uy(t), t)= m(t) + f(t)s(ux(t), uy(t), t),

h2(t) := F (vx(t), vy(t), t) = m(t) + f(t)s(vx(t), vy(t), t).

Factorize h1(t)−h2(t) and choose f(t) as an irreducible
polynomial with largest degree. Then, m(t) is obtained
by dividing h1(t) by f(t). Finally, we obtain the plaintext
m from m(t).

3. Reduction attack

3.1 Reduction attack

In 2007, Uchiyama and Tokunaga proposed an effi-
cient attack, which is called the reduction attack, against
the ASC04 [5]. (See Table 1.) They make use of funda-
mental properties of Gröbner basis. For the proof of its
correctness, the following condition is assumed:

Condition 1 For the defining equation of the alge-
braic surface X, the leading term of X as LT(X) w.r.t.
a monomial order in k[x, y, t] is in the form of cxαyβ

(c ∈ k, (α, β) ̸= (0, 0)).

3.2 Iwami’s reduction attack

In 2008, Iwami generalized the reduction attack [7],
and claimed Condition 1 can be dropped.
We implemented the attack. However we could not

obtain the valid plaintexts. So there is a flaw in Iwami’s
scheme. See [7] for the detail.

Proposition 2 In Iwami’s attack, we have n = 0 in
Step 5.

Proof For ∀g ∈ G in Step 4, g(t) ∈ k[t] ⊂ k(t) ⊂
k(t)[x, y]. Therefore, g(t) is a unit in k(t)[x, y]. Thus, we
obtain as follows:

R1 = (1/g(t))R1g(t).

Since (1/g(t))R1 ∈ k(t)[x, y], we obtain n = r = 0 ∈ k
in Step 5. Thus, we cannot obtain the valid plaintext m.

(QED)

Table 2. Generalized reduction attack.

Input: Public-Key X ∈ k[x, y, t], Ciphertext F ∈ k[x, y, t].
Output: Plaintext m corresponding to ciphertext F (x, y, t).

1. Assume the public-key X ∈ k(t)[x, y], and compute Y :=
X/LC(X). (Y ∈ k(t)[x, y], LC(X) ∈ k[t])

2. Find the remainder R1 ∈ k(t)[x, y] by dividing F by Y .

3. Randomly choose some terms of R1 with cij(t)x
iyj ((i, j)

(0, 0), cij(t) ̸∈ k), changing its coefficients cij(t) to equiv-
alent fractions with a common denominator, and let the
numerators be C(⊂ k[t]).

4. Factorize elements of a set C, and let the set of irreducible
factors of degree greater than or equal to l be G(⊂ k[t]).

5. Choose g ∈ G, and compute a Gröbner basis for an idea
⟨g,X⟩ w.r.t. the lex order (x > y > t) in k[x, y, t]. Find the

remainder n(t) ∈ k[t] by dividing F by the basis.
6. Let n(t) = nk−1t

k−1 + · · ·+ n1t+ n0 ∈ k[t], and compute
m = n0||n1|| · · · ||nk−1.

4. Generalized reduction attack

4.1 Generalized reduction attack

In this section, we propose a generalized reduction at-
tack (GRA for short). This attack is based on Iwami’s
attack, and the flaw is fixed. See Table 2.

4.2 Analysis of the generalized reduction attack

We can prove the correctness of the generalized re-
duction attack without using Condition 1 based on the
following two theorems.

Theorem 3 In Step 4 of our attack, ∃g ∈ G s.t. g =
f(t).

Proof Let I := ⟨Y ⟩ ⊂ k(t)[x, y] be an ideal gener-
ated by Y . Then, {Y } is a Gröbner basis. Since I is a
principal ideal, ∀a ∈ I, a = ḠY (Ḡ ∈ k(t)[x, y]). There-
fore, ∃1G1, R1 ∈ k(t)[x, y] s.t. F = G1Y + R1. This R1

is clearly equal to R1 in Step 2. Similarly, ∃1G2, R2 ∈
k(t)[x, y] s.t. s(x, y, t) = G2Y +R2. Therefore, the cipher
text F (x, y, t) = m(t)+f(t)s(x, y, t)+X(x, y, t)r(x, y, t)
is as follows: (Note that X = LC(X)Y )

F = m(t) + f(t)(G2Y +R2) + LC(X)Y r

= m(t) + f(t)R2 + Y (f(t)G2 + LC(X)r).

Then, each term of m(t) + f(t)R2 can not be divided
by LT(Y ). Therefore, we obtain R1 = m(t) + f(t)R2 by
the uniqueness of R1.
Now, we assume R2 = R2(t) ∈ k(t). Then, we evalu-

ate the cipher polynomial F at sections D1 and D2, we
obtain:

h1(t) = F (ux(t), uy(t), t) = m(t) + f(t)s(ux(t), uy(t), t),

h2(t) = F (vx(t), vy(t), t) = m(t) + f(t)s(vx(t), vy(t), t).

Since X(ux(t), uy(t), t) = LC(X)Y (ux(t), uy(t), t) = 0
and LC(X) ̸= 0, we obtain Y (ux(t), uy(t), t) = 0. There-
fore, s(ux(t), uy(t), t) = G2Y (ux(t), uy(t), t) + R2 = R2.
Similarly, we have s(vx(t), vy(t), t) = R2. Thus, we ob-
tain:

h1(t) = m(t) + f(t)R2 = h2(t).

Therefore, we cannot decrypt because of h1(t) = h2(t),
and this is a contradiction.
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Thus, ∃xiyjtk ((i, j) ̸= 0, k ≥ 0) in the numerator of
R2 and R1(= m(t)+f(t)R2). Then, we randomly choose
some terms of R1 satisfying Step 3, and change them to
equivalent fractions with a common denominator. Let
the numerators be a set C. Since any element of C can
be divided by f(t), we obtain f(t) ∈ G.

(QED)

Note: In what follows, we use f instead of g since we
can obtain f(t) = g (∈ G) by Theorem 3.

Theorem 4 n(t) in Step 5 is the plaintext polynomial
m(t).

Proof Let an ideal I be I := ⟨X, f⟩, and let a Gröbner
basis for I be GB(I) := {f1, . . . , fs}. Moreover, the
Gröbner basis for I ∩ k[t] is equal to GB(I)∩ k[t] by the
elimination ideals. Then, we gather fi ∈ GB(I) ∩ k[t]
from GB(I), then change the indices of fi in ascending
order of degree. We obtain GB(I)∩k[t] = {fi1 , . . . , fil}.
Since we can regard GB(I)∩k[t] as the reduced Gröbner
basis, we have:

GB(I) ∩ k[t] = {fi1}.

Now, we will prove fi1(t) = f(t). First, we shall prove
that fi1(t) is divisible by f(t). ∃a(x, y, t), b(x, y, t) ∈
k[x, y, t] s.t. fi1(t) = a(x, y, t)X(x, y, t) + b(x, y, t)f(t)
since fi1 ∈ I ⊂ k[x, y, t]. Then, substitute the secret-key
(x, y, t) = (ux(t), uy(t), t) into fi1 , and we have: (Note
that X(ux(t), uy(t), t) = 0)

fi1(t) = b(ux(t), uy(t), t)f(t).

We assume b̃(t) := b(ux(t), uy(t), t), and we obtain:

fi1(t) = b̃(t)f(t) (b̃(t) ∈ k[t]).

Secondly, we shall prove that f(t) is divisible by fi1(t).
Since f ∈ I ∩k[t], fi1 is a Gröbner basis. Then, we have:

f(t) = c(t)fi1(t) (c(t) ∈ k[t]).

Therefore, we have:

f(t) = c(t)fi1(t) = c(t)b̃(t)f(t).

Since c(t)b̃(t) = 1 and b̃, c ∈ k, we obtain GB(I)∩k[t] =
{f(t)}.
Thus, we obtain GB(I) = {f(t), f2, . . . , fs} s.t. fi =

xαyβtγ (2 ≤ i ≤ s, (α, β) ̸= 0, γ ≥ 0). Since we compute
a Gröbner basis for an ideal I w.r.t. the lex order (x >
y > t) in k[x, y, t], we have:

LT(f) ∈ k[t], LT(fi) ̸∈ k[t] (2 ≤ i ≤ s).

Then, we shall consider about dividing the cipher text
F = m(t) + sf + Xr by GB(I). Any terms of the
m(t) ∈ k[t] can not be divided by LT(fi) (2 ≤ i ≤ s).
Furthermore, any terms of the m(t) ∈ k[t] can not
be divided by LT(f) because of degm(t) = l − 1 and
deg f(t) = l. Since sf +Xr ∈ I, sf +Xr is divisible by
GB(I).
Thus, by the uniqueness of the reminder of dividing

by Gröbner basis, the reminder of dividing the cipher
text F by GB(I) makes m(t).

(QED)

Table 3. Improved generalized reduction attack.

Input: Public-Key X ∈ k[x, y, t], Ciphertext F ∈ k[x, y, t].
Output: Plaintext m corresponding to ciphertext F (x, y, t).

1. Assume the public-key X ∈ k(t)[x, y], and compute Y := X/
LC(X). (Y ∈ k(t)[x, y],LC(X) ∈ k[t])

2. Find the remainder R1 ∈ k(t)[x, y] by dividing F by Y .

3. Randomly choose some terms of R1 with cij(t)x
iyj ((i, j) ̸=

(0, 0), cij(t) ̸∈ k), changing its coefficients cij(t) to equivalent
fractions with a common denominator, and let the numera-
tors be C(⊂ k[t]).

4. Factorize elements of a set C, and let the set of irreducible
factors of degree greater than or equal to l be G(⊂ k[t]).

5. Choose g ∈ G, and compute a normal form n of F by {g,X}
w.r.t. the lex order (x > y > t) in k[x, y, t]. If the remainder

n is a univariate polynomial n(t) ∈ k[t], go to Step 7.
Otherwise go to Step 6.

6. Choose g ∈ G, and compute a Gröbner basis for an ideal ⟨g,
X⟩ w.r.t. the lex order (x > y > t) in k[x, y, t]. Find the re-
mainder n(t) ∈ k[t] by dividing F by the basis.

7. Let n(t) = nk−1t
k−1 + · · · + n1t + n0 ∈ k[t], and compute

m = n0||n1|| · · · ||nk−1.

By Theorems 3 and 4, we can prove that this algo-
rithm is effective for ASC04.

5. Efficiency of the generalized reduction

attack

When we implement the GRA, since it takes many
times to compute a Gröbner basis, the GRA is not so
efficient in many cases. From a practical point of view,
we need to reduce its running time. Here we propose
some improved methods for the GRA by adding some
step just before Step 5 in the Table 3. We call this attack
IGRA for short. See Table 3 for the detail.
If n(t) ∈ k[t] in Step 5, then the n(t) is a plaintext

polynomial m(t). We have the following theorem.

Theorem 5 If a normal form of F by {f,X} w.r.t.
lex order is a univariate polynomial n(t) ∈ k[t] in Step
5 of Table 3, n(t) is the plaintext polynomial m(t) for
ASC04.

Proof Let an ideal I be I := ⟨X, f⟩, and let a Gröbner
basis for I be GB(I) := {f1, . . . , fs}. As shown at the
proof of Theorem 4,

GB(I) ∩ k[t] = {f(t)}.

Therefore, we can assume f1 = f(t) and LT(fi) =
xαiyβitγi (2 ≤ i ≤ s, (αi, βi, γi) ∈ Z3

≥0, (αi, βi) ̸∈ (0, 0)).
By Theorem 4, since we can obtain the valid plaintext
polynomial m(t) by dividing the ciphertext F (x, y, t) by
GB(I), we have:

F (x, y, t) = m(t) + f1g1 + f2g2 + · · ·+ fsgs

(LT(fi) |/m(t), gi ∈ k[x, y, t], 1 ≤ ∀i ≤ s).

Moreover, we can obtain a univariate polynomial n(t)
by a normal form of F by {f,X}, and we have:

F (x, y, t) = n(t) + fh1 +Xh2 (h1, h2 ∈ k[x, y, t]).

Therefore, we compute difference of the both members,
and we obtain: (Note that f1 = f(t))

n(t)−m(t) = f1(g1 − h1) + f2g2 + · · ·+ frgr −Xh2.
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Table 4. IGRA.

p d l avg. [s] memory [MB]

17 20 160 0.152 11.78
17 50 400 0.572 15.02

Table 5. p = 17, d = 5, l = 50.

GRA IGRA

time [s] 521.350 0.010

Since f1(= f), f2, . . . , fs, X ∈ I, we obtain n(t)−m(t) ∈
I ∩ k[t] (= ⟨f(t)⟩). Moreover, since degm(t) < l ≤
deg f(t) and deg n(t) < deg f(t), we obtain f(t) ̸ | (n(t)−
m(t)). Therefore, we obtain:

n(t)−m(t) = 0 ⇐⇒ n(t) = m(t).

(QED)

By Theorem 5, we do not need to compute a Gröbner
basis if n(t) ∈ k[t], and we can find a plaintext m effi-
ciently.

6. Implementation

In this section, we will show some experimental re-
sults about the GRA (Table 2) and the IGRA (Table 3).
We used a system of Solaris10 with 2GHz CPU (AMD
Opteron246), 4GB memory, and 160GB hard disk. More-
over, we used Magma [8](Ver. 2.16-4) as a software for
writing the program.

(a) IGRA We describe the experimental results
about the IGRA. For each (p, d, l), we generate 100
sets (X, f, s, r,m) randomly. See Table 4 for the re-
sults. We could efficiently find the valid plaintext m
for larger size parameters. The above results of the
IGRA could compute m(t) ∈ k[t] at Step 5. Thus,
we do not need to compute a Gröbner basis at Step
6. Here we note that, there exist some cases we need
Step 6.

(b) GRA v.s. IGRA We compared with the GRA
and the IGRA. As stated in the previous section,
it takes many times to compute a Gröbner basis
generally in the GRA. Actually, there exist some
parameters, which take more than several hours to
compute a Gröbner basis in the GRA. Now, we show
some experimental results. See Table 5 for the re-
sults. In Table 5, for IGRA, the average running
time is shown. Here, we generate randomly 100 sets
(X, f, s, r,m) for p = 17, d = 5, l = 60. On the other
hand, for GRA, the fastest running time in the ex-
periments is only shown since its running time was
too long, and we had to terminate the program be-
fore finished in most cases.

7. Conclusion

We proposed a generalized reduction attack against
ASC04, and the flaw in Iwami’s attack was fixed by
our proposal. Also we showed some experimental results
about our proposed attack. One of our future works is
to evaluate the computational complexity of the general-
ized reduction attack according to [9] which is an attack

against ASC09, where the ASC09 is an another imple-
mentation of the ASC [4,10].
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