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Abstract

Sinc-Nyström methods for Fredholm integral equations of the second kind have been indepen-
dently proposed by Muhammad et al. and Rashidinia-Zarebnia. They also gave error analyses,
but the results did not claim the convergence of their schemes in a precise sense. This is be-
cause in their error estimates there remained an unestimated term: the norm of the inverse
of the coefficient matrix of the resulting linear system. In this paper, we estimate the term
theoretically to complete the convergence estimate of their methods. Furthermore, we also
prove the boundedness of the condition number of each coefficient matrix.
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1. Introduction

We are concerned with Fredholm integral equations of
the second kind of the form

λu(t)−
∫ b

a

k(t, s)u(s) ds = g(t), a ≤ t ≤ b, (1)

where λ is a given constant, g(t) and k(t, s) are given
continuous functions, and u(t) is the solution to be deter-
mined. Various numerical methods have been proposed
to solve (1), and the convergence rate of most existing
methods has been polynomial with respect to the num-
ber of discretization points N [1].
One of the exceptions is the Sinc-Nyström method,

which has firstly been developed by Muhammad et
al. [2]. According to their error analysis, the method can
converge exponentially if the coefficient matrix of the re-
sulting linear equations, say AN , does not behave badly.
To be more precise, the error of the numerical solution
uN (t) has been estimated as

max
t∈[a,b]

|u(t)− uN (t)| ≤ C∥A−1
N ∥2 exp

(
−cN
logN

)
, (2)

where C and c are positive constants independent of
N . In their numerical experiments the term ∥A−1

N ∥2 re-
mained low for all N , which suggested that the method
can converge exponentially. Afterwards Rashidinia-
Zarebnia [3] have proposed another type of Sinc-
Nyström methods, and claimed that the error can be
estimated as

max
t∈[a,b]

|u(t)− ũN (t)| ≤ C̃∥Ã−1
N ∥2 exp(−c̃

√
N), (3)

which also suggested the exponential convergence of
their method. Strictly speaking, however, the exponen-
tial convergence of those two methods still has not been
established at this point since the dependence of the
terms ∥A−1

N ∥2 and ∥Ã−1
N ∥2 on N has not been clarified.

It seems direct estimates of them are difficult, and that
was the reason why they have remained open.
In this paper, we take a different approach: we give

estimates in ∞-norm as

∥A−1
N ∥∞ ≤ K, ∥Ã−1

N ∥∞ ≤ K̃,

for some constants K and K̃. Through ∥X∥2 ≤√
n∥X∥∞ for any n × n matrix X, the estimates im-

ply the desired exponential convergence estimates. The
key here is the analysis of Sinc-collocation methods pre-
viously given by the present authors [4].
The above approach has another virtue that we can

show a stronger result; we also show

∥AN∥∞ ≤ K ′, ∥ÃN∥∞ ≤ K̃ ′,

from which the condition numbers of the matrices are
bounded (in the sense of ∞-norm). This result guaran-
tees not only that the two methods converge exponen-
tially, but also that the resulting linear equations do not
become ill-conditioned as N increases.
This paper is organized as follows. In Section 2, we ex-

plain the concrete procedure of the Sinc-Nyström meth-
ods. New theoretical results are described in Section 3
with their proofs. In Section 4 a numerical example is
shown. Section 5 is devoted to conclusions.
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2. Sinc-Nyström methods

2.1 Sinc quadrature

In the Sinc-Nyström methods, the Sinc quadrature:∫ ∞

−∞
F (x) dx ≈ h

N∑
j=−N

F (jh) (4)

is employed to approximate the integral. Although the
interval of the integral in (1) is finite, we can apply the
Sinc quadrature by combining it with a variable trans-
formation. Rashidinia-Zarebnia [3] utilized the Single-
Exponential (SE) transformation defined by

t = ψSE(x) =
b− a

2
tanh

(x
2

)
+
b+ a

2
,

which enables us to apply the Sinc quadrature as follows:∫ b

a

f(t) dt =

∫ ∞

−∞
f(ψSE(x))ψSE′

(x) dx

≈ h
N∑

j=−N

f(ψSE(jh))ψSE′
(jh). (5)

Muhammad et al. [2] utilized another one:

t = ψDE(x) =
b− a

2
tanh

(π
2
sinhx

)
+
b+ a

2
,

which is called the Double-Exponential (DE) transfor-
mation. By using the DE transformation we have:∫ b

a

f(t) dt ≈ h
N∑

j=−N

f(ψDE(jh))ψDE′
(jh). (6)

In order to achieve quick convergence with the Sinc
quadrature (4), it is necessary that the integrand F is
analytic and bounded in the strip domain: Dd = {z ∈
C : | Im z| < d} for a positive constant d. Accordingly,
as for the approximations (5) and (6), it is appropriate
to introduce the following function space.

Definition 1 Let D be a bounded and simply-connected
domain (or Riemann surface). Then we denote by
H∞(D) the family of all functions that are analytic and
bounded in D .

The domain D should be either ψSE(Dd) or ψ
DE(Dd),

i.e., we may assume f ∈ H∞(ψSE(Dd)) for the approx-
imation (5), and f ∈ H∞(ψDE(Dd)) for the approxima-
tion (6).

2.2 SE-Sinc-Nyström method

Firstly we explain the method derived by Rashidinia-
Zarebnia [3]. Assume the following two conditions:

(SE1) u ∈ H∞(ψSE(Dd)),
(SE2) k(t, ·) ∈ H∞(ψSE(Dd)) for all t ∈ [a, b].

Then the integral K[u](t) :=
∫ b

a
k(t, s)u(s) ds in (1) can

be approximated by

KSE
N [u](t) := h

N∑
j=−N

k(t, ψSE(jh))u(ψSE(jh))ψSE′
(jh).

The mesh size h here is chosen as h =
√
2πd/N . Then,

corresponding to the original equation u = (g + Ku)/λ,

we consider the new equation:

uSE
N (t) =

g(t) +KSE
N [uSE

N ](t)

λ
. (7)

The approximated solution uSE
N is obtained by determin-

ing the unknown coefficients in KSE
N uSE

N , i.e.,

uSE
n = [uSE

N (ψSE(−Nh)), . . . , uSE
N (ψSE(Nh))]T,

where n = 2N + 1. To this end, let us discretize (7) at
t = ψSE(ih) (i = −N, . . . , N), and consider the resulting
system of linear equations

(λIn −KSE
n )uSE

n = gSE
n , (8)

where KSE
n is an n× n matrix whose (i, j) element is

(KSE
n )ij = k(ψSE(ih), ψSE(jh)), i, j = −N, . . . , N,

and gSE
n is an n-dimensional vector defined by

gSE
n = [g(ψSE(−Nh)), . . . , g(ψSE(Nh))]T.

By solving the system (8), the desired solution uSE
N is

obtained. This is called the SE-Sinc-Nyström method.

2.3 DE-Sinc-Nyström method

Next we explain the method derived by Muhammad
et al. [2]. Assume the following two conditions:

(DE1) u ∈ H∞(ψDE(Dd)),
(DE2) k(t, ·) ∈ H∞(ψDE(Dd)) for all t ∈ [a, b].

Then the integral Ku in (1) can be approximated by

KDE
N [u](t) := h

N∑
j=−N

k(t, ψDE(jh))u(ψDE(jh))ψDE′
(jh).

The mesh size h here is chosen as h = log(4dN)/N .
Then, instead of the original equation u = (g + Ku)/λ,
we consider the new equation:

uDE
N (t) =

g(t) +KDE
N [uDE

N ](t)

λ
. (9)

To obtain the approximated solution uDE
N , we have to

determine the unknown coefficients in KDE
N uDE

N , i.e.,

uDE
n = [uDE

N (ψDE(−Nh)), . . . , uDE
N (ψDE(Nh))]T.

By discretizing (9) at t = ψDE(ih) (i = −N, . . . , N), we
have the linear system:

(λIn −KDE
n )uDE

n = gDE
n , (10)

where KDE
n is an n× n matrix whose (i, j) element is

(KDE
n )ij = k(ψDE(ih), ψDE(jh)), i, j = −N, . . . , N,

and gDE
n is an n-dimensional vector defined by

gDE
n = [g(ψDE(−Nh)), . . . , g(ψDE(Nh))]T.

By solving the system (10), the desired solution uDE
N is

obtained. This is called the DE-Sinc-Nyström method.

3. Boundedness of the condition num-

bers

3.1 Main result

The main contribution of this paper is the following
theorem.
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Theorem 2 Let the function k be continuous on [a, b]×
[a, b]. Furthermore, suppose that the homogeneous equa-
tion (λI − K)f = 0 has only the trivial solution f ≡ 0.
Then there exists a positive integer N0 such that for all
N ≥ N0 the matrices (λIn − KSE

n ) and (λIn − KDE
n )

have bounded inverses. Furthermore, there exist con-
stants CSE and CDE independent of N such that for all
N ≥ N0

∥(λIn −KSE
n )∥∞∥(λIn −KSE

n )−1∥∞ ≤ CSE, (11)

∥(λIn −KDE
n )∥∞∥(λIn −KDE

n )−1∥∞ ≤ CDE. (12)

3.2 Sketch of the proof

In what follows we write C = C([a, b]) for short. The
next result plays an important role to prove Theorem 2.

Lemma 3 (Okayama et al. [4, in the proofs of
Theorems 6.3 and 8.2]) Suppose that the assump-
tions in Theorem 2 are fulfilled. Then there exist con-
stants C1 and C2 independent of N such that for all N

∥KSE
N ∥L(C,C) ≤ C1,

∥KDE
N ∥L(C,C) ≤ C2.

Furthermore, there exists a positive integer N0 such that
for all N ≥ N0 the operators (λI−KSE

N ) and (λI−KDE
N )

have bounded inverses, and

∥(λI − KSE
N )−1∥L(C,C) ≤ C3,

∥(λI − KDE
N )−1∥L(C,C) ≤ C4,

hold, where C3 and C4 are constants independent of N .

In view of this, we see that Theorem 2 is established
if the following lemma is shown.

Lemma 4 Suppose that the assumptions in Theorem 2
are fulfilled. Then we have

∥(λIn −KSE
n )∥∞ ≤ ∥(λI − KSE

N )∥L(C,C), (13)

∥(λIn −KDE
n )∥∞ ≤ ∥(λI − KDE

N )∥L(C,C). (14)

Furthermore, if the inverse operators (λI −KSE
N )−1 and

(λI − KDE
N )−1 exist, then the matrices (λIn − KSE

n )−1

and (λIn −KDE
n )−1 also exist, and we have

∥(λIn −KSE
n )−1∥∞ ≤ ∥(λI − KSE

N )−1∥L(C,C), (15)

∥(λIn −KDE
n )−1∥∞ ≤ ∥(λI − KDE

N )−1∥L(C,C). (16)

We prove this lemma below.

3.3 Proofs

The existence of the inverse matrix: (λIn −KSE
n )−1 is

shown by the following lemma.

Lemma 5 Suppose that the assumptions in Theorem 2
are fulfilled, and let g ∈ C([a, b]). Then the following two
statements are equivalent:

(A) The equation (λI−KSE
N )v = g has a unique solution

v ∈ C.

(B) The system of linear equations (λIn−KSE
n )cn = gSE

n

has a unique solution cn ∈ Rn.

Proof We show (A) ⇒ (B) first. Using the unique
solution v ∈ C, define the vector cn ∈ Rn as cn =
[v(ψSE(−Nh)), . . . , v(ψSE(Nh))]T. Clearly this cn is a

solution of the linear system in (B), which shows the
existence of a solution. The uniqueness is shown as fol-
lows. Suppose that there exists another solution c̃n =
[c̃−N , . . . , c̃N ]T. Define a function ṽ ∈ R as

ṽ(t) =
1

λ

(
g(t) + h

N∑
j=−N

k(t, ψSE(jh))c̃jψ
SE′

(jh)

)
. (17)

At the points ti = ψSE(ih) (i = −N, . . . , N), clearly

λṽ(ti) = g(ti) + h

N∑
j=−N

k(ti, tj)c̃jψ
SE′

(jh) (18)

holds. On the other hand,

λc̃i = g(ti) + h
N∑

j=−N

k(ti, tj)c̃jψ
SE′

(jh) (19)

holds since c̃n is a solution of the linear system. And
since the right-hand side of (18) is equal to that of (19),
we conclude ṽ(ti) = c̃i. Therefore (18) can be rewritten
as (λI − KSE

N )ṽ = g, which means ṽ is a solution of the
equation in (A). From the uniqueness of the equation,
v ≡ ṽ holds, which implies cn = c̃n. This shows the
desired uniqueness.
Next we show (B) ⇒ (A). Let c̃n = [c̃−N , . . . , c̃N ]T

be a unique solution in (B), and define a function
ṽ ∈ C by (17). Then by the same argument as
above, we can conclude ṽ is a solution of the equa-
tion in (A), which shows the existence. The unique-
ness is shown as follows. Suppose that there exists an-
other solution v ∈ C. Define the vector cn ∈ Rn as
cn = [v(ψSE(−Nh)), . . . , v(ψSE(Nh))]T. Then clearly cn
is a solution of the linear system in (B). From the unique-
ness of the linear system, we have cn = c̃n. Therefore
v(ψSE(jh)) = c̃j , and v can be rewritten as

v(t) =
1

λ

(
g(t) + h

N∑
j=−N

k(t, ψSE(jh))c̃jψ
SE′

(jh)

)
. (20)

In view of (17) and (20), we have v ≡ ṽ, which shows
the desired uniqueness.

(QED)

In the same manner we can prove the following lemma
for the DE-Sinc-Nyström method. The proof is omitted.

Lemma 6 Suppose that the assumptions in Theorem 2
are fulfilled, and let g ∈ C([a, b]). Then the following two
statements are equivalent:

(A) The equation (λI−KDE
N )v = g has a unique solution

v ∈ C.

(B) The system of linear equations (λIn − KDE
n )cn =

gDE
n has a unique solution cn ∈ Rn.

Thus the existence of the inverse matrix is guaran-
teed in both cases (SE and DE). The remaining task is
to show (13)–(16). We show only (13) and (15) since (14)
and (16) are shown in the same manner.

Proof of Lemma 4 We show (13) first. Let cn =
[c−N , . . . , cN ]T be an arbitrary n-dimensional vector.
Pick a function γ ∈ C that satisfies γ(ψSE(ih)) = ci
(i = −N, . . . , N) and ∥γ∥C = ∥cn∥∞. Using this func-
tion γ, define a function f ∈ C as f = (λI −KSE

N )γ, and
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Fig. 1. Error of the Sinc-Nyström methods for (21).

a vector fn as fn = [f(ψSE(−Nh)), . . . , f(ψSE(Nh))]T.
Then we have

∥(λIn −KSE
n )cn∥∞ = ∥fn∥∞

≤ ∥f∥C
= ∥(λI − KSE

N )γ∥C
≤ ∥(λI − KSE

N )∥L(C,C)∥γ∥C
= ∥(λI − KSE

N )∥L(C,C)∥cn∥∞,

from which (13) follows.
Next we show (15). Notice that the inverse matrix

(λIn −KSE
n )−1 exists from Lemma 5. Let cn be an arbi-

trary n-dimensional vector. In the same manner as the
above, pick a function γ ∈ C. Define a function f ∈ C
as f = (λI − KSE

N )−1γ, and a vector fn in the same
way as the above. The difference from the above is in f ;
(λI−KSE

N ) is replaced with (λI−KSE
N )−1. Then we have

∥(λIn −KSE
n )−1cn∥∞ = ∥fn∥∞

≤ ∥f∥C

= ∥(λI − KSE
N )−1γ∥C

≤ ∥(λI − KSE
N )−1∥L(C,C)∥γ∥C

= ∥(λI − KSE
N )−1∥L(C,C)∥cn∥∞,

from which (15) follows. This completes the proof.
(QED)

4. Numerical example

In this section we show numerical results for

u(t)−
∫ π/2

0

(ts)3/2u(s) ds =
√
t

(
1− π3

24
t

)
, 0 ≤ t ≤ π

2
,

(21)

which has also been conducted by Muhammad et al. [2,
Example 4.3]. The exact solution is u(t) =

√
t. Let

us first check the conditions described in Sections 2.2
and 2.3. The conditions (SE1) and (SE2) are satisfied
with d = π − ϵ, and (DE1) and (DE2) are satisfied with
d = (π − ϵ)/2, where ϵ is an arbitrary small positive
number (we set ϵ = π − 3.14 in our computation).
Based on the information, we implemented the SE-

Sinc-Nyström method and DE-Sinc-Nyström method in
C++ with double-precision floating-point arithmetic.
The errors |u(t) − uSE

N (t)| and |u(t) − uDE
N (t)| were in-
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Fig. 2. Condition number of the coefficient matrix appearing in
the Sinc-Nyström methods for (21).

vestigated on equally-spaced 1000 points on [0, π/2],
and the maximum of them is shown in Fig. 1. We
can observe the rate O(exp(−c1

√
N)) in the SE-Sinc-

Nyström method, and O(exp(−c2N/ logN)) in the DE-
Sinc-Nyström method. These results can be explained
by combining the existing estimates (2) and (3) with
the new result (Theorem 2). Furthermore from Fig. 2,
we can also confirm boundedness of the condition num-
bers, i.e., the estimates (11) and (12).

5. Concluding remarks

The Sinc-Nyström methods for (1) have been known
as efficient methods in the sense that exponential con-
vergence can be attained. However, the convergence has
not been guaranteed theoretically, since in the exist-
ing estimates (2) and (3), there remained unestimated
terms: ∥A−1

N ∥2 and ∥Ã−1
N ∥2 (AN = In − KDE

n and

ÃN = In −KSE
n ). In this paper we showed theoretically

that ∥A−1
N ∥∞ and ∥Ã−1

N ∥∞ are bounded, from which
exponential convergence of the methods is guaranteed.
Furthermore we showed that ∥AN∥∞ and ∥ÃN∥∞ are
also bounded, and consequently the condition number
of them is bounded, as stated in Theorem 2.
Muhammad et al. [2] have also developed the Sinc-

Nyström methods for Volterra integral equations, and
the similar result to this paper can be shown for them.
We are now working on this issue, and the result will be
reported somewhere else soon.
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