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Abstract

This paper presents a new methodology to compute VaR in the portfolio credit loss model.
The Wavelet Approximation can be useful to compute non-smooth distributions, often arising
in small or concentrated portfolios. We contribute to this technique by extending the Wavelet
Approximation for Vasicek one-factor model to multi-factor model. Key features of our new
algorithm are: (i) a finite series expansion of the wavelet scaling coefficients, (ii) Wynn’s
epsilon-algorithm to accelerate convergence of those series, and (iii) an efficient spline inter-
polation to calculate the Laplace transforms. We illustrate the effectiveness of our algorithm
through numerical examples.
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1. Introduction

Credit Risk Models are usually classified as struc-
tural or reduced-form models (see, for example, recent
research [1]). In the present paper, we consider the struc-
tural model called Vasicek multi-factor model.
Let (Ω,F , P ) be a probability space. Consider a credit

portfolio consisting of N obligors. Define the exposure
weight of obligor i by wi = Ei/

∑N
j=1 Ej , where Ei is

the exposure of obligor i, and the probability of default
pi. The Vasicek model assumes that the standardized
asset log-return Zi of obligor i is standard normally
distributed and that obligor i defaults when Zi is less
than a pre-specified threshold Φ−1(pi), where Φ(x) is
the standard normal cumulative distribution function
and Φ−1(p) is its inverse. Therefore the default can be
modeled as a Bernoulli random variable Di such that

Di =

{
1, Zi ≤ Φ−1(pi),
0, Zi > Φ−1(pi).

It follows that the portfolio loss is given by

L =
N∑
i=1

wiDi.

Let VaRα(L) be α-quantile of the loss distribution L
defined by

VaRα(L) = inf {x : P (L > x) ≤ 1− α} . (1)

The modeling of the dependence structure among
counterparties in the portfolio is simplified by the in-
troduction of systematic risk factors Y = (Y1, . . . , YM ).
For each obligor i, Zi is represented by standard nor-
mally distributed systematic risk factor Y components

and an idiosyncratic noise component ϵi:

Zi = αi · Y +
√

1− |αi|2 ϵi, (2)

where Y and ϵ1, . . . , ϵN are independent and normally
distributed and the parameter αi = (αi,s)

M
s=1 ∈ [0, 1)M

is called the loading vector of obligor i.
Monte Carlo (MC) simulation is a standard method

for measuring the risk of a credit portfolio. However this
method is very time-consuming when the size of the
portfolio increases. For this reason, analytical or fast nu-
merical techniques have been developed during the last
years. One of such approach is to give an analytical ap-
proximation of the Bromwich integral of the moment
generating function [2, 3]. Another approach to numeri-
cally invert the Laplace transform is studied by [4,5] via
the wavelet approximation (WA) method [6]. Under the
Vasicek one-factor model (M = 1), [4,5] shows accurate
and fast results for a wide range of portfolios at very
high loss levels.
In the present paper, we contribute to this techniques

by extending the WA method for Vasicek multi-factor
model (M ≥ 2).

2. Moment generating function (MGF)

of the portfolio loss

Recall that in the Vasicek model framework, if the
systematic risk factors Y are fixed, default occurs inde-
pendently because the only remaining uncertainty is the
idiosyncratic noise (ϵi)i. The MGF conditional on Y is
thus given by the product of each obligor’s MGF as

ML(s;Y ) ≡ E(e−sL|Y ) =
N∏
i=1

E(e−swiDi |Y )
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=
N∏
i=1

(
1− pi(Y ) + pi(Y )e−swi

)
,

where pi(y) is the probability of obligor i’s default con-
ditional on a realization Y = y given by

pi(y) ≡ P (Zi ≤ Ti|Y = y) = Φ

(
Ti − α · y√
1− |αi|2

)
,

for y = (y1, . . . , yM ), and Ti ≡ Φ−1(pi).

Taking the expectation value of this conditional MGF
yields the unconditional MGF:

ML(s) ≡ E(e−sL) = E(E(e−sL|Y ))

= E

[
N∏
i=1

(
1− pi(Y ) + pi(Y )e−swi

)]

=

∫
RM

1

(2π)
M
2 |Σ| 12

exp

(
−1

2
ytΣ−1y

)

×
N∏
i=1

(
1− pi(y) + pi(y)e

−swi
)
dy, (3)

where Σ is the correlation matrix of a multivariate ran-
dom vector Y = (Y1, . . . , YM ).

3. Wavelet approximation of cumulative

distribution functions (CDF)

Let K = L+η (η > 0) be a random variable, then the
CDF FL(·) is equal to FK(·+η) and FK(x) = 0, x ∈ [0, η)
holds. Let ϕ be the scaling function of Haar Wavelet

ϕ(x) =

{
1, if 0 ≤ x < 1,
0, otherwise,

define {ϕj,k(x)}k∈Z by ϕj,k(x) = 2j/2ϕ(2jx−k), and de-
fine a CDF Fm

K (x) =
∑∞

k=0 cm,kϕm,k(x), where cm,k =

2m/2
∫ (k+1)/2m

k/2m
FK(y)dy. Recall that FK(·) is a mono-

tone nondecreasing function. We can show that for each
x ∈ Qd ≡ ∪m∈N{k/2m; k ∈ Z} there exists some m0 ∈ N
satisfying:

Fm
K (x) ≥ Fm+1

K (x) ≥ FK(x), (m ≥ m0),

FK(x) = lim
m→∞

Fm
K (x).

The sequence (Fm
K )m converges in distribution to FK ,

since Qd is a dense subset of [0,∞).
The main idea of this section is to approximate the

mgf MK(·) of FK by the mgf Mm
K (·) of Fm

K [4, 6]. Inte-
gration by parts on the integral in Mm

K gives

MK(s) ≈ Mm
K (s) ≡

∫ ∞

0

e−sxdFm
K (x)

= s

∫ ∞

0

e−sxFm
K (x)dx

= (1− z)Pm

(
exp

(
− s

2m

))
for s ∈ D ≡ {s ∈ C; Re(s) ≥ 0} and m ≥ − log2(η),
where Pm(z) ≡ 2m/2

∑∞
k=0 cm,kz

k. The residue theorem

then gives an approximation of FK(x):

FK(x) ≈ Fm
K (x) = 2

m
2 cm,k =

1

2πi

∫
Cr

Pm(z)

zk+1
dz

≈ 1

2πi

∫
Cr

P̃m(z)

zk+1
dz, for x ∈

[
k

2m
,
k + 1

2m

)
, (4)

where P̃m(z) ≡ ML(−2m log z)e2
mη log z

1− z

and Cr ≡ {z ∈ C; |z| = r} (0 < r < 1).

Therefore, by using the change of variables for the inte-
gral in (4), we have the following approximation

FK(x) ≈ F̃m
K (x) ≡ 1

πrk

∫ π

0

Re(P̃m(reiθ)e−ikθ)dθ (5)

for k/2m ≤ x < (k + 1)/2m.

4. A fast algorithm for wavelet coefficient

calculation

In the case of Vasicek one-factor model (M = 1), [4,5]
approximate the integral of (5) using the ordinary trape-
zoidal rule and compute the MGF (3) fast and accurately
by using a Gauss-Hermite quadrature formula.
In the case of Vasicek multi-factor model (M ≥ 2),

on the other hand, Monte Carlo Integration is one of
the most accurate method to compute the MGF. Thus,
in this paper, we use the Monte Carlo Integration to
compute the MGF (3). However, as is well known, Monte
Carlo Integration is very time consuming. Therefore, we
need more efficient method to approximate the integral
of (5) than previous method [4, 5] using the ordinary
trapezoidal rule.
We introduce fast and efficient methods for calculating

the integral of (5) by using the convergence acceleration
scheme (Wynn’s epsilon algorithm) and a cubic spline
interpolation.

5. Finite series expansion and Wynn’s

epsilon-algorithm

Let us consider a finite series expansion of (5) by

changing the scale of the variable θ̂ = kθ:

F̃m
K (x) =

2mx
(m)
k −1∑
j=0

aj(x
(m)
k ), x ∈ [x

(m)
k , x

(m)
k+1), (6)

where aj(x) ≡
eγx

π2mx

∫ (j+1)π

jπ

Re(Î(m)
x (θ̂)e−iθ̂)dθ̂,

Î(m)
x (θ̂) ≡

ML

(
γ − i

θ̂

x

)
exp

(
−η

(
γ − i

θ̂

x

))

1− exp
(
− γ

2m

)
exp

(
i

θ̂

2mx

) ,

x
(m)
k ≡ k

2m
and γ ≡ −2m log r.

The purpose of this finite series expansion is to ap-
ply the Wynn’s epsilon-algorithm as a method for ac-
celeration of convergence of a complex valued series.
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Wynn’s epsilon-algorithm is the following nonlinear re-
cursive scheme:

ϵnk+1 = ϵn+1
k−1 +

1

ϵn+1
k − ϵnk

, (7)

ϵn−1 = 0, ϵn0 = Sn,

where Sn is (n + 1)th partial sum of the series (6). For
q ∈ N, it is known that the converted sequence (ϵn2q)n
converges drastically faster than the original series. As-
sume that S0, S1, . . . , Sn(ϵ)−1 (n(ϵ) < k) is given, then
we can calculate

ϵ02q, ϵ
1
2q, . . . , ϵ

n(ϵ)−2q−1
2q

by using the recursive equation (7) and approximate

F̃m
K (x) by F̃

m,(ϵ)
K (x) ≡ ϵ

n(ϵ)−2q−1
2q for k/2m ≤ x <

(k + 1)/2m. Therefore, the original CDF FK(x) can be

approximated by F̃
m,(ϵ)
K (x):

FK(x) ≈ F̃
m,(ϵ)
K (x), x ∈

[
k

2m
,
k + 1

2m

)
.

In order to calculate F̃m
K (x), we need to calculateML(γ−

iθ) for all θ ∈ [0, 2mπ). But on the other hand, in order to

calculate F̃
m,(ϵ)
K (x), we only need to calculateML(γ−iθ)

for θ ∈ [0, 2mπn(ϵ)/k). We can thus expect that Wynn’s
epsilon-algorithm is quite efficient in calculating the in-
tegral of (5).

6. Cubic spline interpolation

It is required to calculate the moment generating func-
tion {ML(γ − iθ); θ ∈ [0, 2mπn(ϵ)/k0)} in order to ob-

tain the CDF function F̃
m,(ϵ)
K (x) for x ∈ [k0/2

m, 1). If
a cubic spline interpolation method introduced below is
used, the computation time of the moment generating
function can be shortened significantly.
First, we calculate the MGF at grid points ∆ξ

∆ξ ≡ {0 = ξ0 < ξ1 < · · · < ξNX
}, (8)

where
2mπn(ϵ)

k0
< ξNX−1,

using the Monte Carlo methods:

ML(γ− iξi) ≈
1

NI

NI∑
k=1

ML(γ− iξi;Y
(k)), i ≤ NX , (9)

where NI is the sample size of monte carlo integration
and Y (1), . . . , Y (NI) are samples from the probability dis-
tribution of random variable Y = (Y1, . . . , YM ).
For i = 1, . . . , NX − 1, we then find a quadratic func-

tion fi(θ) whose graph {(θ, fi(θ)); θ ≥ 0} contains all
three data points {(ξj ,ML(γ − iξj))}i+1

j=i−1.
Thus, we obtain the following cubic spline interpola-

tion

ML(γ − iθ) ≈ ξi+1 − θ

ξi+1 − ξi
fi(θ) +

θ − ξi
ξi+1 − ξi

fi+1(θ)

for θ ∈ [ξi, ξi+1] (i ≥ 1) and quadratic spline interpola-
tion ML(γ − iθ) ≈ f1(θ) for θ ∈ [ξ0, ξ1].
Therefore, we can calculate the approximate MGF

{ML(γ − iθ); θ ∈ [0, 2mπn(ϵ)/k0)} and compute the

integral of
∫ (j+1)π

jπ
Re(Î

(m)
x (θ̂)e−iθ̂)dθ̂, x ∈ [k0/2

m, 1),

j < n(ϵ), via the trapezoidal rule with a partition of

the interval [jπ, (j + 1)π] into N
(j)
T equal parts.

7. Computation of VaR

We use a numerical root-finding algorithm of bi-

section method to invert the CDF F̃
m,(ϵ)
K (·). Suppose

F̃
m,(ϵ)
K (k0/2

m) < α, then there exists j∗ such that

F̃
m,(ϵ)
K

(
j∗

2m

)
≤ α < F̃

m,(ϵ)
K

(
j∗ + 1

2m

)
and approximate the Value-at-Risk

VaRα(L) = VaRα(K)− η ≈ 2j∗ + 1

2m+1
− η.

8. Numerical examples

In this section we illustrate the performance of our
method through examples. All experiments are per-
formed on a personal computer, Intel(R) Core(TM) 2
Duo CPU 3.00GHz, 2.00GB RAM.
We assume that the number of systematic risk factors

is set as M = 33 which is the number of TOPIX sec-
tor indices, each obligor i belong to an industrial sector
sec(i) ∈ {1, . . . , 33} and Zi is represented by a standard
normally distributed sectoral factor component Ysec(i)

and an idiosyncratic noise component ϵi:

Zi =
√
ρi Ysec(i) +

√
1− ρi ϵi. (10)

In this multi-sector model (10), we can use an efficient
monte carlo sampling algorithm [3] for the calculation
of (9), whose computational time moderately depends
on portfolio size. Note that efficient monte carlo sam-
pling algorithms for the calculation of general multi-
factor model (2) are not established. The reason is that
discretization method [3] for the fast MGF computation
does not work effectively as for the multi-sector model.
The factor correlations Σ = (Σs,t)

33
s,t=1 are estimated

by the historical correlation of TOPIX sector index re-
turns. We use monthly data of TOPIX sector indices
from January 2007 to December 2011.
We consider eight sample portfolios, as shown in the

following table,

Portfolio N wi ρi

P1 1,000 C/i 0.2
P2 1,000 C/i 0.25

P3 1,000 C/i 0.3
P4 1,000 C/i 0.35
P5 1,000 C/i 0.4
P6 3,000 1/N 0.3

P7 10,000 C/i 0.3
P8 30,000 C/i 0.3

where C is a positive constant such that
∑N

i=1 wi = 1
holds. The exposure distribution indicates that portfo-
lios P1, P2, P3, P4, P5 and P7 are concentrated accord-
ing to a power law distribution, whereas portfolio P6 is
completely diversified.
We consider a rating system with 20 ratings, and as-

sume their PD to be given by the following table.
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ri 1 2 3 4 5

PDri 0.19% 0.21% 0.23% 0.25% 0.27%

ri 6 7 8 9 10

PDri 0.29% 0.30% 0.33% 0.35% 0.39%

ri 11 12 13 14 15

PDri 0.42% 0.5% 0.6% 0.9% 1.1%

ri 16 17 18 19 20

PDri 1.3% 1.73% 1.9% 3.0% 10.0%

PD for 20 ratings

In all portfolios, the rating r(i) ∈ {1, . . . , 20} of obligor
i is chosen with

r(i) ≡ i (mod 20)

holds for i = 1, . . . , N . Similarly to the rating allocation
explained above, the sector sec(i) ∈ {1, . . . , 33} and the
correlation parameter ρi of obligor i is chosen such that

sec(i) ≡ i (mod 33)

holds for i = 1, . . . , N .
We refer to all other parameters as algorithm param-

eters, which determine the performance of the numeri-
cal approximation but do not affect the risk profile of
portfolios. These algorithm parameters are listed in the
following table.

Image resolution parameter m = 13

Parallel shift parameter η = 0.0003
Real part of integration path γ = −0.25× log 10−14

Acceleration index q = 4

Truncation parameter n(ϵ) = 14
Number of integration points NI = 1, 000, 000

Partition size of [jπ, (j + 1)π] N
(j)
T = 190, 000

The grid points (8) are set as

∆ξ = {i1}99i1=0 ∪ {100 + 4× i2}99i2=0 .

We examine the performance of our method (WA)by
computing VaR for sample portfolios. Monte Carlo Sim-
ulation used as benchmarks are performed with 1 million
loss scenarios (MC).
We present VaR0.999(L) measurement results obtained

by our method and Monte Carlo Simulation in the fol-
lowing table,

Portfolio VaR(WA) VaR(MC) RE

P1 0.1454 0.1453 0.09%
P2 0.1471 0.1473 0.16%

P3 0.1495 0.1499 0.27%
P4 0.1531 0.1541 0.68%
P5 0.1586 0.1594 0.53%
P6 0.1001 0.0997 0.44%

P7 0.1228 0.1227 0.05%
P8 0.1148 0.1154 0.55%

where the relative error (RE) is defined by

RE =
|VaR(WA)−VaR(MC)|

VaR(MC)
.

All relative errors are smaller than 0.68%.
We provide as well the computational time in min-

utes in the following table both for WA method and MC
method.

N Portfolio Time(WA) Time(MC)

1,000 P1∼P5 3.2 min 5.3 min
3,000 P6 3.3 min 17.9 min
10,000 P7 3.5 min 51.7 min
30,000 P8 3.9 min 158.3 min

WAmethod takes a few minutes even for a portfolio with
30, 000 obligors. On the other hand, MC method requires
computation time roughly proportional to portfolio size.
We have shown the suitability of the fast wavelet ex-

pansion method using epsilon-algorithm and cubic spline
interpolation to measure the credit portfolio risk, based
on the multi-factor Vasicek model (M ≥ 2).
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