
JSIAM Letters Vol.4 (2012) pp.25–28 c⃝2012 Japan Society for Industrial and Applied Mathematics

A modified Block IDR(s) method for computing high

accuracy solutions

Michihiro Naito1, Hiroto Tadano1 and Tetsuya Sakurai1,2

1 Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
305-8573, Japan

2 JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012, Japan

E-mail michihiro mma.cs.tsukuba.ac.jp

Received January 18, 2012, Accepted March 12, 2012

Abstract

In this paper, the difference between the residual and the true residual caused by the compu-
tation errors that arise in matrix multiplications for solutions generated by the Block IDR(s)
method is analyzed. Moreover, in order to reduce the difference between the residual and the
true residual, a modified Block IDR(s) method is proposed. Numerical experiments demon-
strate that the difference under the proposed method is smaller than that of the conventional
Block IDR(s) method.
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1. Introduction

Linear systems with multiple right-hand sides of the
form

AX = B,

where the coefficient matrix A ∈ Cn×n, B ∈ Cn×L, and
X ∈ Cn×L appear together in many problems, including
lattice quantum chromodynamics calculation of physi-
cal quantities [1] and an eigensolver problem using con-
tour integration [2]. To solve these linear systems, Block
Krylov subspace methods such as Block BiCG [3] and
Block BiCGSTAB [4] have been proposed. These meth-
ods can solve linear systems with multiple right-hand
sides more efficiently than Krylov subspace methods for
single right-hand side.
We consider the Block IDR(s) method [5] as a Block

Krylov subspace method. A difference between the resid-
ual generated by the Block IDR(s) method and the true
residual B − AX obtained by the approximate solution
occurs. When such a difference occurs, even if the resid-
ual generated by the Block IDR(s) method satisfies the
convergence criterion, high accuracy approximate solu-
tions cannot be obtained. In this paper, we analyze the
difference between the residual and the true residual,
and, based on the results of the analysis, a solution for
reducing the difference is proposed.
The composition of this paper is as follows. In Section

2, the algorithm of the Block IDR(s) method is illus-
trated. In Section 3, the difference between the residual
and the true residual caused by the computation errors
that arise in matrix multiplications for solutions gener-
ated by the Block IDR(s) method is analyzed. In Sec-
tion 4, to reduce this difference, a modified Block IDR(s)
method is proposed. We show that the errors which arise

in matrix multiplications for the proposed Block IDR(s)
method do not influence between the residual and the
true residual. In Section 5, some numerical experiments
comparing the conventional Block IDR(s) method and
the proposed Block IDR(s) method are described. In
Section 6, this paper is concluded.

2. The Block IDR(s) method

In this section, we show the algorithm of the Block
IDR(s) method [5]. Given A ∈ Cn×n and R0 ∈ Cn×L,
and assuming that the residuals Ri−s, . . . , Ri belong to
subspace Gj , the residual Ri+1 which belongs to sub-
space Gj is constructed by setting

Ri+1 = (I − ωj+1A)Vi,

where Vi ∈ Cn×L. Then let

∆Rk = Rk+1 −Rk,

∆Xk = Xk+1 −Xk,

Gk = (∆Rk−s,∆Rk−s+1, . . . ,∆Rk−1),

Uk = (∆Xk−s,∆Xk−s+1, . . . ,∆Xk−1).

Then Vi can be written as

Vi = Ri −GiCi. (1)

Moreover, the condition on Vi can be written as

PHVi = O, (2)

where P ∈ Cn×sL. Then Ci can be obtained from (1)
and (2).
The approximate solution Xi+1 can be written as

Xi+1 = Xi + ωj+1Vi − UiCi,
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X0 ∈ Cn×L is an initial guess
R0 = B −AX0, P ∈ Cn×sL

for i = 0 to s− 1 do
Vi = ARi, ω = Tr(V H

i Ri)/Tr(V
H
i Vi)

∆Xi = ωRi,∆Ri = ωVi

Xi+1 = Xi +∆Xi, Ri+1 = Ri +∆Ri

end for
Gi+1 = (∆Ri−s+1,∆Ri−s+2, . . . ,∆Ri)
Ui+1 = (∆Xi−s+1,∆Xi−s+2, . . . ,∆Xi)
M = PHGi+1, F = PHRi+1

i = s
while ∥Ri∥F < ϵ∥B∥F do
for k = 0 to s do

solve Ci from MCi = F
Vi = Ri −GiCi

if k = 0 then
Ti = AVi

ω = Tr(TH
i Vi)/Tr(T

H
i Ti)

∆Ri = −GiCi − ωAVi

∆Xi = −UiCi + ωVi

else
∆Xi = −UiCi + ωVi

∆Ri = −A∆Xi

end if
Xi+1 = Xi +∆Xi, Ri+1 = Ri +∆Ri

M = PHGi, F = PHRi+1

Gi+1 = (∆Ri−s+1,∆Ri−s+2, . . . ,∆Ri)
Ui+1 = (∆Xi−s+1,∆Xi−s+2, . . . ,∆Xi)
i = i+ 1

end for
end while

Fig. 1. Algorithm of the Block IDR(s) method.

where the scalar parameter ωj+1 is

ωj+1 = Tr
[
(AVi)

HVi

]
/Tr

[
(AVi)

HAVi

]
.

The algorithm of the Block IDR(s) method is shown
in Fig. 1. Here, ∥ · ∥F denotes the Frobenius norm of a
matrix and Tr[ · ] denotes the trace of a matrix.

3. Analysis of the difference between the

residual and the true residual

The relation between the residual Rk and the approx-
imate solution Xk can be written as

Rk = B −AXk. (3)

However, a difference between the residual generated
by the Block IDR(s) method and the true residual ob-
tained by the approximate solution occurs. In this sec-
tion, we analyze this difference based on an analysis
method of the Block BiCGGR method [6].
We define X̃0 and R̃0 as

X̃0 = X0 +∆X0 +∆X1 + · · ·+∆Xs−1,

R̃0 = R0 +∆R0 +∆R1 + · · ·+∆Rs−1.

The residual Ri+1 and the approximate solution Xi+1

generated by the Block IDR(s) method are written as

Xi+1 = Xi + ωj+1Vi − UiCi

= X̃0 +

i∑
k=s

ωmVk −
i∑

k=s

UkCk, (4)

and

Ri+1 = Ri − ωj+1AVi −GiCi

= R̃0 −
i∑

k=s

ωmAVk −
i∑

k=s

GkCk, (5)

where m = ⌊(k + 1)/(s+ 1)⌋. From (4) and (5), the true
residual B−AXk for the Block IDR(s) method is given
by

B −AXi+1 = R̃0 −
i∑

k=s

A(ωmVk)−
i∑

k=s

A(UkCk)

= Ri+1 +
i∑

k=s

[ωm(AVk)−A(ωmVk)]

+
i∑

k=s

[GkCk −A(UkCk)]. (6)

From (3) and (6), the difference between the residual

and the true residual is given by
∑i

k=s[ωm(AVk) −
A(ωmVk)] +

∑i
k=s[GkCk −A(UkCk)], in (6).

4. Derivation of a modified Block IDR(s)

method

In this section, from the analysis of the difference
between the residual generated by the Block IDR(s)
method and the true residual obtained from the approx-
imate solution, a modified Block IDR(s) method is pro-
posed to reduce this difference.
To reduce the difference, the proposed method negates

the influence of the computation error generated by the
multiplication with Ci in the Block IDR(s) method.
Then the proposed method satisfies

GkCk −A(UkCk) = O.

We define the following equation

Qk = −Uk − ωj+1Gk. (7)

From (7), the residual Ri+1 and the approximate solu-
tion Xi+1 generated by the Block IDR(s) is written as

Xi+1 = Xi + ωj+1Ri +QiCi

= X̃0 +
i∑

k=s

ωmRk +
i∑

k=s

QkCk. (8)

Ri+1 = Ri − ωj+1ARi −A(QiCi)

= R̃0 −
i∑

k=s

ωm(ARk)−
i∑

k=s

A(QkCk). (9)

From (8) and (9), the true residual B−AXk is written
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X0 ∈ Cn×L is an initial guess
R0 = B −AX0, P ∈ Cn×sL

for i = 0 to s− 1 do
Vi = ARi, ω = Tr(V H

i Ri)/Tr(V
H
i Vi)

∆Xi = ωRi,∆Ri = ωVi

Xi+1 = Xi +∆Xi, Ri+1 = Ri +∆Ri

end for
Gi+1 = (∆Ri−s+1,∆Ri−s+2, . . . ,∆Ri)
Ui+1 = (∆Xi−s+1,∆Xi−s+2, . . . ,∆Xi)
M = PHGi+1, F = PHRi+1

i = s
while ∥Ri∥F < ϵ∥B∥F do
for k = 0 to s do

solve Ci from MCi = F
if k = 0 then
Qi = −Ui − ωGi

W = ARi

ω = Tr(WHRi)/Tr(W
HW )

∆Ri = −ωW −A(QiCi)
∆Xi = ωRi +QiCi

else
Vi = Ri −GiCi

∆Xi = −UiCi + ωVi

∆Ri = −A∆Xi

end if
Xi+1 = Xi +∆Xi, Ri+1 = Ri +∆Ri

M = PHGi, F = PHRi+1

Gi+1 = (∆Ri−s+1,∆Ri−s+2, . . . ,∆Ri)
Ui+1 = (∆Xi−s+1,∆Xi−s+2, . . . ,∆Xi)
i = i+ 1

end for
end while

Fig. 2. Algorithm of the proposed method.

as

B −AXi+1 = R̃0 −
i∑

k=s

A(ωmRk)−
i∑

k=s

A(QkCk)

= Ri+1 +
i∑

k=s

[ωm(ARk)−A(ωmRk)]

+

i∑
k=s

[A(QkCk)−A(QkCk)]

= Ri+1 +
i∑

k=s

[ωm(ARk)−A(ωmRk)].

By comparing (6) with the above equation, we see that
the influence of the computation error generated by the
multiplication with Ci in the Block IDR(s) method is
negated.
The algorithm of the proposed Block IDR(s) method

is shown in Fig. 2.

5. Numerical experiments

In this section, we verify that the proposed Block
IDR(s) method can reduce the difference between the
residual and the true residual relative to the conven-

Table 1. Size and number of nonzero elements of test matrices.

Matrix name Size
Number of

nonzero elements

poisson2D 367 2,417
CONF5.0-00L8X8-1000 49,152 1,916,928

Table 2. Results of the Block IDR(s) method for poisson2D.

s L Iter. Res. True Res.

1 140 8.73×10−15 9.84×10−15

1 2 105 1.39×10−14 1.44×10−14

4 79 1.86×10−15 4.87×10−15

1 100 2.92×10−15 4.52×10−14

8 2 79 7.30×10−15 3.15×10−13

4 57 9.89×10−15 6.34×10−14

1 99 6.30×10−15 2.34×10−13

16 2 77 4.89×10−15 2.58×10−13

4 57 2.88×10−15 4.59×10−13

1 98 3.77×10−15 1.47×10−10

32 2 75 9.10×10−15 6.72×10−11

4 57 3.30×10−15 1.86×10−11

Table 3. Results of the Block IDR(s) method for CONF5.0-
00L8X8-1000.

s L Iter. Res. True Res.

1 1140 7.43×10−15 1.12×10−14

1 2 895 1.85×10−14 3.95×10−14

4 847 8.57×10−15 2.47×10−11

1 904 7.67×10−15 1.09×10−14

8 2 710 1.89×10−14 5.04×10−14

4 550 9.70×10−15 1.42×10−12

1 867 5.75×10−15 2.69×10−14

16 2 697 2.71×10−15 4.08×10−13

4 539 3.31×10−15 2.58×10−13

1 851 9.16×10−15 1.05×10−5

32 2 692 2.59×10−15 1.14×10−3

4 527 6.08×10−15 1.40×10−4

tional Block IDR(s) method through comparative ex-
periments.
The test matrices used in the numerical experiments

are poisson2D and CONF5.4-00L8X8-1000 from the
MATRIX MARKET collection [7]. The size and the
number of nonzero elements of these matrices are shown
in Table 1. The matrix CONF5.0-00L8X8-1000 is con-
structed as In−κD, whereD ∈ Cn×n is a non-Hermitian
matrix and κ is a real-valued parameter. The parameter
κ was set to 0.1782.
The initial solution X0 was set to the zero matrix. The

right-hand side B is given by B = [e1, e2, . . . , eL], where
ej is the jth unit vector. The convergence criterion of
the residual was set with 1.0× 10−14.
All experiments were performed on an Intel Core i7

2.8 GHz CPU with 8 GB of memory using MATLAB
7.12.0.635 (R2011a).
The results of the conventional Block IDR(s) method

are shown in Tables 2 and 3. In this Table, Iter., Res.,
and True Res. denote the number of iterations, the rel-
ative residual norm ∥Rk∥F/∥Bk∥F, and the true rela-
tive residual norm ∥B−AXk∥F/∥Bk∥F, respectively. As
shown in Tables 2 and 3, the relative residual norms of
the conventional Block IDR(s) method satisfy the con-
vergence criterion. However, because of the difference
between the true residual and the residual generated by
the Block IDR(s) method, the true residual norms do
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Table 4. Results of the proposed Block IDR(s) method for pois-
son2D.

s L Iter. Res. True Res.

1 139 8.47×10−15 8.95×10−15

1 2 103 3.99×10−15 4.61×10−15

4 77 6.93×10−15 7.31×10−15

1 100 2.65×10−15 1.53×10−15

8 2 79 6.34×10−16 1.85×10−15

4 60 2.43×10−16 1.89×10−15

1 100 6.72×10−16 1.27×10−15

16 2 77 5.02×10−15 5.22×10−15

4 59 4.48×10−15 4.67×10−15

1 97 9.35×10−15 9.50×10−15

32 2 77 8.14×10−16 1.48×10−15

4 61 5.10×10−15 5.25×10−15

Table 5. Results of the proposed Block IDR(s) method for
CONF5.0-00L8X8-1000.

s L Iter. Res. True Res.

1 1127 9.24×10−15 1.74×10−14

1 2 991 6.86×10−15 7.15×10−15

4 813 3.10×10−14 3.19×10−14

1 901 5.86×10−15 6.04×10−15

8 2 710 1.08×10−14 1.09×10−14

4 557 1.58×10−14 1.62×10−14

1 868 7.61×10−15 7.69×10−15

16 2 703 8.11×10−15 8.18×10−15

4 530 9.14×10−15 9.21×10−15

1 689 8.20×10−15 8.36×10−15

32 2 524 8.57×10−15 8.67×10−15

4 404 7.71×10−15 8.57×10−15

not satisfy the convergence criterion.
The results of the proposed Block IDR(s) method are

shown in Tables 4 and 5. As shown, the relative resid-
ual norms of the proposed Block IDR(s) method sat-
isfy the convergence criterion. Moreover, the proposed
Block IDR(s) method reduced the differences between
the residual and the true residual relative to the conven-
tional Block IDR(s) method.

6. Conclusion

A difference between the residual generated by the
Block IDR(s) method and the true residual B−AX may
occur. If so, even if the residual generated by the Block
IDR(s) method satisfies the convergence criterion, high
accuracy approximate solutions cannot be obtained.
Therefore, in this paper, we analyzed the difference

between the residual generated by the Block IDR(s)
method and the true residual. From the analysis re-
sults, we were able to propose a modified Block IDR(s)
method. The proposed method can negate the influence
of the computation error generated by the multiplication
with Ci in the Block IDR(s) method. Through numer-
ical experiments, we verified that the proposed method
can reduce the difference relative to the conventional
method.
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