A modified Block IDR(s) method for computing high accuracy solutions

Michihiro Naito ${ }^{1}$, Hiroto Tadano ${ }^{1}$ and Tetsuya Sakurai ${ }^{1,2}$
${ }^{1}$ Department of Computer Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
${ }^{2}$ JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012, Japan
E-mail michihiro@mma.cs.tsukuba.ac.jp

Received January 18, 2012, Accepted March 12, 2012

Abstract

In this paper, the difference between the residual and the true residual caused by the computation errors that arise in matrix multiplications for solutions generated by the Block $\operatorname{IDR}(s)$ method is analyzed. Moreover, in order to reduce the difference between the residual and the true residual, a modified Block $\operatorname{IDR}(s)$ method is proposed. Numerical experiments demonstrate that the difference under the proposed method is smaller than that of the conventional Block $\operatorname{IDR}(s)$ method.

Keywords Block Krylov subspace methods, Block $\operatorname{IDR}(s)$ method, linear systems with multiple right-hand sides, high accuracy solutions
Research Activity Group Algorithms for Matrix / Eigenvalue Problems and their Applications

1. Introduction

Linear systems with multiple right-hand sides of the form

$$
A X=B
$$

where the coefficient matrix $A \in \mathbb{C}^{n \times n}, B \in \mathbb{C}^{n \times L}$, and $X \in \mathbb{C}^{n \times L}$ appear together in many problems, including lattice quantum chromodynamics calculation of physical quantities [1] and an eigensolver problem using contour integration [2]. To solve these linear systems, Block Krylov subspace methods such as Block BiCG [3] and Block BiCGSTAB [4] have been proposed. These methods can solve linear systems with multiple right-hand sides more efficiently than Krylov subspace methods for single right-hand side.

We consider the Block $\operatorname{IDR}(s)$ method [5] as a Block Krylov subspace method. A difference between the residual generated by the Block $\operatorname{IDR}(s)$ method and the true residual $B-A X$ obtained by the approximate solution occurs. When such a difference occurs, even if the residual generated by the $\operatorname{Block} \operatorname{IDR}(s)$ method satisfies the convergence criterion, high accuracy approximate solutions cannot be obtained. In this paper, we analyze the difference between the residual and the true residual, and, based on the results of the analysis, a solution for reducing the difference is proposed.

The composition of this paper is as follows. In Section 2 , the algorithm of the $\operatorname{Block} \operatorname{IDR}(s)$ method is illustrated. In Section 3, the difference between the residual and the true residual caused by the computation errors that arise in matrix multiplications for solutions generated by the Block $\operatorname{IDR}(s)$ method is analyzed. In Section 4, to reduce this difference, a modified Block $\operatorname{IDR}(s)$ method is proposed. We show that the errors which arise
in matrix multiplications for the proposed Block $\operatorname{IDR}(s)$ method do not influence between the residual and the true residual. In Section 5, some numerical experiments comparing the conventional Block $\operatorname{IDR}(s)$ method and the proposed Block $\operatorname{IDR}(s)$ method are described. In Section 6, this paper is concluded.

2. The Block $\operatorname{IDR}(s)$ method

In this section, we show the algorithm of the Block $\operatorname{IDR}(s)$ method [5]. Given $A \in \mathbb{C}^{n \times n}$ and $R_{0} \in \mathbb{C}^{n \times L}$, and assuming that the residuals R_{i-s}, \ldots, R_{i} belong to subspace \mathcal{G}_{j}, the residual R_{i+1} which belongs to subspace \mathcal{G}_{j} is constructed by setting

$$
R_{i+1}=\left(I-\omega_{j+1} A\right) V_{i},
$$

where $V_{i} \in \mathbb{C}^{n \times L}$. Then let

$$
\begin{aligned}
& \Delta R_{k}=R_{k+1}-R_{k} \\
& \Delta X_{k}=X_{k+1}-X_{k} \\
& G_{k}=\left(\Delta R_{k-s}, \Delta R_{k-s+1}, \ldots, \Delta R_{k-1}\right), \\
& U_{k}=\left(\Delta X_{k-s}, \Delta X_{k-s+1}, \ldots, \Delta X_{k-1}\right) .
\end{aligned}
$$

Then V_{i} can be written as

$$
\begin{equation*}
V_{i}=R_{i}-G_{i} C_{i} . \tag{1}
\end{equation*}
$$

Moreover, the condition on V_{i} can be written as

$$
\begin{equation*}
P^{\mathrm{H}} V_{i}=O, \tag{2}
\end{equation*}
$$

where $P \in \mathbb{C}^{n \times s L}$. Then C_{i} can be obtained from (1) and (2).

The approximate solution X_{i+1} can be written as

$$
X_{i+1}=X_{i}+\omega_{j+1} V_{i}-U_{i} C_{i}
$$

```
\(X_{0} \in \mathbb{C}^{n \times L}\) is an initial guess
\(R_{0}=B-A X_{0}, P \in \mathbb{C}^{n \times s L}\)
for \(i=0\) to \(s-1\) do
    \(V_{i}=A R_{i}, \omega=\operatorname{Tr}\left(V_{i}^{\mathrm{H}} R_{i}\right) / \operatorname{Tr}\left(V_{i}^{\mathrm{H}} V_{i}\right)\)
    \(\Delta X_{i}=\omega R_{i}, \Delta R_{i}=\omega V_{i}\)
    \(X_{i+1}=X_{i}+\Delta X_{i}, R_{i+1}=R_{i}+\Delta R_{i}\)
end for
\(G_{i+1}=\left(\Delta R_{i-s+1}, \Delta R_{i-s+2}, \ldots, \Delta R_{i}\right)\)
\(U_{i+1}=\left(\Delta X_{i-s+1}, \Delta X_{i-s+2}, \ldots, \Delta X_{i}\right)\)
\(M=P^{\mathrm{H}} G_{i+1}, F=P^{\mathrm{H}} R_{i+1}\)
\(i=s\)
while \(\left\|R_{i}\right\|_{\mathrm{F}}<\epsilon\|B\|_{\mathrm{F}}\) do
    for \(k=0\) to \(s\) do
        solve \(C_{i}\) from \(M C_{i}=F\)
        \(V_{i}=R_{i}-G_{i} C_{i}\)
        if \(k=0\) then
            \(T_{i}=A V_{i}\)
                \(\omega=\operatorname{Tr}\left(T_{i}^{\mathrm{H}} V_{i}\right) / \operatorname{Tr}\left(T_{i}^{\mathrm{H}} T_{i}\right)\)
                \(\Delta R_{i}=-G_{i} C_{i}-\omega A V_{i}\)
                \(\Delta X_{i}=-U_{i} C_{i}+\omega V_{i}\)
        else
                \(\Delta X_{i}=-U_{i} C_{i}+\omega V_{i}\)
                \(\Delta R_{i}=-A \Delta X_{i}\)
        end if
        \(X_{i+1}=X_{i}+\Delta X_{i}, R_{i+1}=R_{i}+\Delta R_{i}\)
        \(M=P^{\mathrm{H}} G_{i}, F=P^{\mathrm{H}} R_{i+1}\)
        \(G_{i+1}=\left(\Delta R_{i-s+1}, \Delta R_{i-s+2}, \ldots, \Delta R_{i}\right)\)
        \(U_{i+1}=\left(\Delta X_{i-s+1}, \Delta X_{i-s+2}, \ldots, \Delta X_{i}\right)\)
        \(i=i+1\)
    end for
end while
```

Fig. 1. Algorithm of the Block $\operatorname{IDR}(s)$ method.
where the scalar parameter ω_{j+1} is

$$
\omega_{j+1}=\operatorname{Tr}\left[\left(A V_{i}\right)^{\mathrm{H}} V_{i}\right] / \operatorname{Tr}\left[\left(A V_{i}\right)^{\mathrm{H}} A V_{i}\right] .
$$

The algorithm of the Block $\operatorname{IDR}(s)$ method is shown in Fig. 1. Here, $\|\cdot\|_{F}$ denotes the Frobenius norm of a matrix and $\operatorname{Tr}[\cdot]$ denotes the trace of a matrix.

3. Analysis of the difference between the residual and the true residual

The relation between the residual R_{k} and the approximate solution X_{k} can be written as

$$
\begin{equation*}
R_{k}=B-A X_{k} \tag{3}
\end{equation*}
$$

However, a difference between the residual generated by the Block $\operatorname{IDR}(s)$ method and the true residual obtained by the approximate solution occurs. In this section, we analyze this difference based on an analysis method of the Block BiCGGR method [6].

We define \tilde{X}_{0} and \tilde{R}_{0} as

$$
\begin{aligned}
& \tilde{X}_{0}=X_{0}+\Delta X_{0}+\Delta X_{1}+\cdots+\Delta X_{s-1} \\
& \tilde{R}_{0}=R_{0}+\Delta R_{0}+\Delta R_{1}+\cdots+\Delta R_{s-1}
\end{aligned}
$$

The residual R_{i+1} and the approximate solution X_{i+1}
generated by the Block $\operatorname{IDR}(s)$ method are written as

$$
\begin{align*}
X_{i+1} & =X_{i}+\omega_{j+1} V_{i}-U_{i} C_{i} \\
& =\tilde{X}_{0}+\sum_{k=s}^{i} \omega_{m} V_{k}-\sum_{k=s}^{i} U_{k} C_{k} \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
R_{i+1} & =R_{i}-\omega_{j+1} A V_{i}-G_{i} C_{i} \\
& =\tilde{R}_{0}-\sum_{k=s}^{i} \omega_{m} A V_{k}-\sum_{k=s}^{i} G_{k} C_{k} \tag{5}
\end{align*}
$$

where $m=\lfloor(k+1) /(s+1)\rfloor$. From (4) and (5), the true residual $B-A X_{k}$ for the $\operatorname{Block} \operatorname{IDR}(s)$ method is given by

$$
\begin{align*}
B-A X_{i+1}= & \tilde{R}_{0}-\sum_{k=s}^{i} A\left(\omega_{m} V_{k}\right)-\sum_{k=s}^{i} A\left(U_{k} C_{k}\right) \\
= & R_{i+1}+\sum_{k=s}^{i}\left[\omega_{m}\left(A V_{k}\right)-A\left(\omega_{m} V_{k}\right)\right] \\
& +\sum_{k=s}^{i}\left[G_{k} C_{k}-A\left(U_{k} C_{k}\right)\right] . \tag{6}
\end{align*}
$$

From (3) and (6), the difference between the residual and the true residual is given by $\sum_{k=s}^{i}\left[\omega_{m}\left(A V_{k}\right)-\right.$ $\left.A\left(\omega_{m} V_{k}\right)\right]+\sum_{k=s}^{i}\left[G_{k} C_{k}-A\left(U_{k} C_{k}\right)\right]$, in (6).

4. Derivation of a modified Block $\operatorname{IDR}(s)$ method

In this section, from the analysis of the difference between the residual generated by the $\operatorname{Block} \operatorname{IDR}(s)$ method and the true residual obtained from the approximate solution, a modified Block $\operatorname{IDR}(s)$ method is proposed to reduce this difference.
To reduce the difference, the proposed method negates the influence of the computation error generated by the multiplication with C_{i} in the $\operatorname{Block} \operatorname{IDR}(s)$ method.

Then the proposed method satisfies

$$
G_{k} C_{k}-A\left(U_{k} C_{k}\right)=O .
$$

We define the following equation

$$
\begin{equation*}
Q_{k}=-U_{k}-\omega_{j+1} G_{k} \tag{7}
\end{equation*}
$$

From (7), the residual R_{i+1} and the approximate solution X_{i+1} generated by the Block $\operatorname{IDR}(s)$ is written as

$$
\begin{align*}
X_{i+1} & =X_{i}+\omega_{j+1} R_{i}+Q_{i} C_{i} \\
& =\tilde{X}_{0}+\sum_{k=s}^{i} \omega_{m} R_{k}+\sum_{k=s}^{i} Q_{k} C_{k} . \tag{8}\\
R_{i+1} & =R_{i}-\omega_{j+1} A R_{i}-A\left(Q_{i} C_{i}\right) \\
& =\tilde{R}_{0}-\sum_{k=s}^{i} \omega_{m}\left(A R_{k}\right)-\sum_{k=s}^{i} A\left(Q_{k} C_{k}\right) . \tag{9}
\end{align*}
$$

From (8) and (9), the true residual $B-A X_{k}$ is written

```
\(X_{0} \in \mathbb{C}^{n \times L}\) is an initial guess
\(R_{0}=B-A X_{0}, P \in \mathbb{C}^{n \times s L}\)
for \(i=0\) to \(s-1\) do
    \(V_{i}=A R_{i}, \omega=\operatorname{Tr}\left(V_{i}^{\mathrm{H}} R_{i}\right) / \operatorname{Tr}\left(V_{i}^{\mathrm{H}} V_{i}\right)\)
    \(\Delta X_{i}=\omega R_{i}, \Delta R_{i}=\omega V_{i}\)
    \(X_{i+1}=X_{i}+\Delta X_{i}, R_{i+1}=R_{i}+\Delta R_{i}\)
end for
\(G_{i+1}=\left(\Delta R_{i-s+1}, \Delta R_{i-s+2}, \ldots, \Delta R_{i}\right)\)
\(U_{i+1}=\left(\Delta X_{i-s+1}, \Delta X_{i-s+2}, \ldots, \Delta X_{i}\right)\)
\(M=P^{\mathrm{H}} G_{i+1}, F=P^{\mathrm{H}} R_{i+1}\)
\(i=s\)
while \(\left\|R_{i}\right\|_{\mathrm{F}}<\epsilon\|B\|_{\mathrm{F}}\) do
    for \(k=0\) to \(s\) do
        solve \(C_{i}\) from \(M C_{i}=F\)
        if \(k=0\) then
            \(Q_{i}=-U_{i}-\omega G_{i}\)
            \(W=A R_{i}\)
            \(\omega=\operatorname{Tr}\left(W^{\mathrm{H}} R_{i}\right) / \operatorname{Tr}\left(W^{\mathrm{H}} W\right)\)
            \(\Delta R_{i}=-\omega W-A\left(Q_{i} C_{i}\right)\)
                \(\Delta X_{i}=\omega R_{i}+Q_{i} C_{i}\)
        else
            \(V_{i}=R_{i}-G_{i} C_{i}\)
                \(\Delta X_{i}=-U_{i} C_{i}+\omega V_{i}\)
                \(\Delta R_{i}=-A \Delta X_{i}\)
            end if
        \(X_{i+1}=X_{i}+\Delta X_{i}, R_{i+1}=R_{i}+\Delta R_{i}\)
        \(M=P^{\mathrm{H}} G_{i}, F=P^{\mathrm{H}} R_{i+1}\)
        \(G_{i+1}=\left(\Delta R_{i-s+1}, \Delta R_{i-s+2}, \ldots, \Delta R_{i}\right)\)
        \(U_{i+1}=\left(\Delta X_{i-s+1}, \Delta X_{i-s+2}, \ldots, \Delta X_{i}\right)\)
        \(i=i+1\)
    end for
end while
```

Fig. 2. Algorithm of the proposed method.
as

$$
\begin{aligned}
B-A X_{i+1}= & \tilde{R}_{0}-\sum_{k=s}^{i} A\left(\omega_{m} R_{k}\right)-\sum_{k=s}^{i} A\left(Q_{k} C_{k}\right) \\
= & R_{i+1}+\sum_{k=s}^{i}\left[\omega_{m}\left(A R_{k}\right)-A\left(\omega_{m} R_{k}\right)\right] \\
& +\sum_{k=s}^{i}\left[A\left(Q_{k} C_{k}\right)-A\left(Q_{k} C_{k}\right)\right] \\
= & R_{i+1}+\sum_{k=s}^{i}\left[\omega_{m}\left(A R_{k}\right)-A\left(\omega_{m} R_{k}\right)\right] .
\end{aligned}
$$

By comparing (6) with the above equation, we see that the influence of the computation error generated by the multiplication with C_{i} in the $\operatorname{Block} \operatorname{IDR}(s)$ method is negated.

The algorithm of the proposed Block $\operatorname{IDR}(s)$ method is shown in Fig. 2.

5. Numerical experiments

In this section, we verify that the proposed Block $\operatorname{IDR}(s)$ method can reduce the difference between the residual and the true residual relative to the conven-

Table 1. Size and number of nonzero elements of test matrices.

Matrix name	Size	Number of nonzero elements
poisson2D	367	2,417
CONF5.0-00L8X8-1000	49,152	$1,916,928$

Table 2. Results of the Block IDR(s) method for poisson2D.

s	L	Iter.	Res.	True Res.
1	1	140	8.73×10^{-15}	9.84×10^{-15}
	2	105	1.39×10^{-14}	1.44×10^{-14}
	4	79	1.86×10^{-15}	4.87×10^{-15}
8	1	100	2.92×10^{-15}	4.52×10^{-14}
	2	79	7.30×10^{-15}	3.15×10^{-13}
	4	57	9.89×10^{-15}	6.34×10^{-14}
	1	99	6.30×10^{-15}	2.34×10^{-13}
	2	77	4.89×10^{-15}	2.58×10^{-13}
	4	57	2.88×10^{-15}	4.59×10^{-13}
32	1	98	3.77×10^{-15}	1.47×10^{-10}
	2	75	9.10×10^{-15}	6.72×10^{-11}
	4	57	3.30×10^{-15}	1.86×10^{-11}

Table 3. Results of the Block IDR(s) method for CONF5.0-00L8X8-1000

s	L	Iter.	Res.	True Res.
1	1	1140	7.43×10^{-15}	1.12×10^{-14}
	2	895	1.85×10^{-14}	3.95×10^{-14}
	4	847	8.57×10^{-15}	2.47×10^{-11}
8	1	904	7.67×10^{-15}	1.09×10^{-14}
	2	710	1.89×10^{-14}	5.04×10^{-14}
	4	550	9.70×10^{-15}	1.42×10^{-12}
	1	867	5.75×10^{-15}	2.69×10^{-14}
	2	697	2.71×10^{-15}	4.08×10^{-13}
	4	539	3.31×10^{-15}	2.58×10^{-13}
32	1	851	9.16×10^{-15}	1.05×10^{-5}
	2	692	2.59×10^{-15}	1.14×10^{-3}
	4	527	6.08×10^{-15}	1.40×10^{-4}

tional Block $\operatorname{IDR}(s)$ method through comparative experiments.

The test matrices used in the numerical experiments are poisson2D and CONF5.4-00L8X8-1000 from the MATRIX MARKET collection [7]. The size and the number of nonzero elements of these matrices are shown in Table 1. The matrix CONF5.0-00L8X8-1000 is constructed as $I_{n}-\kappa D$, where $D \in \mathbb{C}^{n \times n}$ is a non-Hermitian matrix and κ is a real-valued parameter. The parameter κ was set to 0.1782 .

The initial solution X_{0} was set to the zero matrix. The right-hand side B is given by $B=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{L}\right]$, where \boldsymbol{e}_{j} is the j th unit vector. The convergence criterion of the residual was set with 1.0×10^{-14}

All experiments were performed on an Intel Core i7 2.8 GHz CPU with 8 GB of memory using MATLAB 7.12.0.635 (R2011a).

The results of the conventional Block $\operatorname{IDR}(s)$ method are shown in Tables 2 and 3. In this Table, Iter., Res., and True Res. denote the number of iterations, the relative residual norm $\left\|R_{k}\right\|_{\mathrm{F}} /\left\|B_{k}\right\|_{\mathrm{F}}$, and the true relative residual norm $\left\|B-A X_{k}\right\|_{\mathrm{F}} /\left\|B_{k}\right\|_{\mathrm{F}}$, respectively. As shown in Tables 2 and 3, the relative residual norms of the conventional Block $\operatorname{IDR}(s)$ method satisfy the convergence criterion. However, because of the difference between the true residual and the residual generated by the Block $\operatorname{IDR}(s)$ method, the true residual norms do

Table 4. Results of the proposed Block IDR(s) method for poisson2D.

s	L	Iter.	Res.	True Res.
1	1	139	8.47×10^{-15}	8.95×10^{-15}
	2	103	3.99×10^{-15}	4.61×10^{-15}
	4	77	6.93×10^{-15}	7.31×10^{-15}
8	1	100	2.65×10^{-15}	1.53×10^{-15}
	2	79	6.34×10^{-16}	1.85×10^{-15}
	4	60	2.43×10^{-16}	1.89×10^{-15}
	1	100	6.72×10^{-16}	1.27×10^{-15}
	2	77	5.02×10^{-15}	5.22×10^{-15}
	4	59	4.48×10^{-15}	4.67×10^{-15}
32	1	97	9.35×10^{-15}	9.50×10^{-15}
	2	77	8.14×10^{-16}	1.48×10^{-15}
	4	61	5.10×10^{-15}	5.25×10^{-15}

Table 5. Results of the proposed Block IDR(s) method for CONF5.0-00L8X8-1000.

s	L	Iter.	Res.	True Res.
1	1	1127	9.24×10^{-15}	1.74×10^{-14}
	2	991	6.86×10^{-15}	7.15×10^{-15}
	4	813	3.10×10^{-14}	3.19×10^{-14}
8	1	901	5.86×10^{-15}	6.04×10^{-15}
	2	710	1.08×10^{-14}	1.09×10^{-14}
	4	557	1.58×10^{-14}	1.62×10^{-14}
	1	868	7.61×10^{-15}	7.69×10^{-15}
	2	703	8.11×10^{-15}	8.18×10^{-15}
	4	530	9.14×10^{-15}	9.21×10^{-15}
32	1	689	8.20×10^{-15}	8.36×10^{-15}
	2	524	8.57×10^{-15}	8.67×10^{-15}
	4	404	7.71×10^{-15}	8.57×10^{-15}

not satisfy the convergence criterion.
The results of the proposed Block $\operatorname{IDR}(s)$ method are shown in Tables 4 and 5 . As shown, the relative residual norms of the proposed Block $\operatorname{IDR}(s)$ method satisfy the convergence criterion. Moreover, the proposed Block $\operatorname{IDR}(s)$ method reduced the differences between the residual and the true residual relative to the conventional Block $\operatorname{IDR}(s)$ method.

6. Conclusion

A difference between the residual generated by the $\operatorname{Block} \operatorname{IDR}(s)$ method and the true residual $B-A X$ may occur. If so, even if the residual generated by the Block $\operatorname{IDR}(s)$ method satisfies the convergence criterion, high accuracy approximate solutions cannot be obtained.

Therefore, in this paper, we analyzed the difference between the residual generated by the $\operatorname{Block} \operatorname{IDR}(s)$ method and the true residual. From the analysis results, we were able to propose a modified Block $\operatorname{IDR}(s)$ method. The proposed method can negate the influence of the computation error generated by the multiplication with C_{i} in the Block $\operatorname{IDR}(s)$ method. Through numerical experiments, we verified that the proposed method can reduce the difference relative to the conventional method.

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research of Ministry of Education, Culture, Sports, Science and Technology, Japan, Grant number: 21246018, 21105502 and 22700003.

References

[1] PACS-CS Collaboration, S. Aoki et al., 2+1 Flavor Lattice QCD toward the Physical Point, arXiv:0807.1661v1 [hep-lat], 2008.
[2] T. Sakurai, H. Tadano, T. Ikegami and U. Nagashima, A parallel eigensolver using contour integration for generalized eigenvalue problems in molecular simulation, Taiwanese J. Math., 14 (2010), 855-867.
[3] D. P. O'Leary, The block conjugate gradient algorithm and related methods, Lin. Alg. Appl., 29 (1980), 293-322.
[4] A. El Guennouni, K. Jbilou and H. Sadok, A block version of BiCGSTAB for linear systems with multiple right-hand sides, Elec. Trans. Numer. Anal., 16 (2003), 129-142.
[5] L. Du, T. Sogabe, B. Yu, Y. Yamamoto and S. -L. Zhang, A block $\operatorname{IDR}(\mathrm{s})$ method for nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 235 (2011), 4095-4106.
[6] H. Tadano, T. Sakurai and Y. Kuramashi, Block BiCGGR: a new Block Krylov subspace method for computing high accuracy solutions, JSIAM Letters, 1 (2009), 44-47.
[7] Matrix Market, http://math.nist.gov/MatrixMarket/

