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Abstract

Topology optimization is to determine a shape or topology, having minimum cost. We are
devoted entirely to minimum compliance (maximum stiffness) as minimum cost. An optimal
shape Ω is realized as a distribution of material on a reference domain D, strictly larger than Ω
in general. The optimal shape Ω and an equilibrium u(Ω) on Ω are approximated by material
distributions on the domain D and equilibriums also on D, respectively. This note gives a
sufficient setting to the existence of an optimal material distribution.
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1. Introduction

Let D be a bounded domain of Rd, d = 2, 3, and ω be
an open subset included in D together with its closure ω,
i.e., ω ⊂ ω ⊂ D. The set ω may have several connected
components. Let Ω = D \ ω. The domain Ω could be
multiply connected in general. Some material with den-
sity value one is filled into Ω and D, so the weights of
Ω and D are given by |Ω| =

∫
Ω
dx and |D|, respectively.

We assume that Ω has the weight |Ω| (≤ cv), where cv is
strictly smaller than |D|. Let Γ = ∂D be the boundary
of D such that Γ = ΓD ∪ ΓN , Γo

D ∩ Γo
N = ∅, where Γo

D

and Γo
N are the interiors of ΓD and ΓN , respectively. Let

H1(Ω) and H1/2(ΓN ) be the usual Sobolev spaces and
let H−1/2(ΓN ) be the dual space of H1/2(ΓN ).
For f ∈ L2(D), f ̸= 0 and g ∈ H−1/2(ΓN ) we consider

the problem BVP(Ω): Find uΩ ∈ H1(Ω) such that
−∆uΩ + uΩ = f in Ω,
uΩ = 0 on ΓD,
∂νu

Ω = g on ΓN ,
∂νu

Ω = 0 on Γω(= ∂ω ∩ ∂Ω).

(1)

Let J(Ω) be cost of Ω(⊂ D) given by

J(Ω) =
∫
Ω
fuΩdx+

∫
ΓN

guΩdΓ. (2)

After giving an admissible family U of domains Ω ad-
equately, we consider a minimizing problem, called the
topology optimization problem (confer [1,2] and refereces
therein), TOP(D): Find Ω∗ ∈ U such that

J(Ω∗) = infΩ∈U J(Ω). (3)

Our aim is to assure the existence of a solution Ω∗ ∈ U
of TOP(D). For this aim a choice of admissible sets
is significant (confer Theorem 10). Another aim is to
approximate such a solution Ω∗ by density functions ϕ ∈
L∞(D). Before precise description of U we approximate

the problem (1) by boundary value problems (5).

2. Approximation

We owe the idea of the approximation (5) to the spirit
in the SIMP model by Bendsøe and Sigmund [2]. Let OD

be a family of open, connected sets Ω (⊂ D,Γ ⊂ Ω, |Ω| ≤
cv) and let Φ = {χΩ | Ω ∈ OD}, where χΩ denotes the
characteristic function of Ω. For Ω of OD, χΩ (∈ Φ) can
be obviously approximated by simple functions χΩ,ω

κ =
χΩ + κχω using small κ (> 0). Let Φκ = {χΩ,ω

κ | Ω ∈
OD} and V (Ω) = {v ∈ H1(Ω) | v = 0 on ΓD}. The
problem BVP(Ω) (1) is equivalent to the problem: Find
uΩ ∈ V (D) such that

aΩ(uΩ, v) = (f, v)Ω + ⟨g, v⟩ΓN , v ∈ V (Ω),
aΩ(v, w) =

∫
D
χΩ(∇v · ∇w + vw)dx,

(f, v)Ω =
∫
D
χΩfvdx, ⟨g, v⟩ΓN

=
∫
ΓN

gvdΓ.
(4)

Let V = {v ∈ H1(D) | v = 0 on ΓD}. Replacing
the function χΩ by a function χΩ,ω

κ in the equality (4)
implies BVPΩ,ω

κ (D): Find uΩ,ω
κ ∈ V such that

aΩ,ω
κ (uΩ,ω

κ , v) = (f, v)Ω + κ(f, v)ω
+ ⟨g, v⟩ΓN

, v ∈ V,
aΩ,ω
κ (v, w) =

∫
Ω
(∇v · ∇w + vw)dx
+ κ

∫
ω
(∇v · ∇w + vw)dx.

(5)

For simplicity let uΩ
κ = uΩ,ω

κ |Ω, uω
κ = uΩ,ω

κ |ω and ∂G
ν v

be the outer normal derivative of v on a smooth open
domain G. Further if uΩ,ω

κ is smooth enough, then uΩ,ω
κ

is a unique solution of the following problem:
−∆uΩ,ω

κ + uΩ,ω
κ = f in Ω ∪ ω,

uΩ
κ = uω

κ on ∂Ω ∩ ∂ω,
∂Ω
ν u

Ω
κ + κ∂ω

ν u
ω
κ = 0 on ∂Ω ∩ ∂ω,

∂Ω
ν u

Ω
κ = g on ΓN ,

uΩ
κ = 0 on ΓD.
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We shall approximate the cost function J(Ω) by

J (χΩ,ω
κ ) = (f, uΩ,ω

κ )Ω + κ(f, uΩ,ω
κ )ω + ⟨g, uΩ,ω

κ ⟩ΓN
. (6)

3. Admissible family

Our one aim is to prescribe U precisely and another
aim is to assure approximation of uΩ and J(Ω) by uΩ,ω

κ

and J (χΩ,ω
κ ) as κ → +0, respectively. A family U =

Lip(k, r), constructed by uniformly Lipschitz continuous
domains, due to Chenais [3], is a good admissible family.
Here k > 0 and r > 0. For simplicity we define Lip(k, r)
with a slight modification from the original.

Definition 1 A domain Ω (∈ OD) is admissible and
belongs to Lip(k, r), if and only if, for any x ∈ ∂Ω, there
exists a local coordinate system with a real valued func-
tion φ of d− 1 variables with Lipschitz constant k such
that B(x, r) ∩ Ω = {(x̂, xd) ∈ Ω | xd < φ(x̂)}, where
x̂ ∈ Rd−1, B(x, r) = {y ∈ Rd | |y − x| ≤ r} and | · |
denotes the Euclid norm in Rd.

The advantage of using U = Lip(k, r) is that The-
orems 2, 3 and 10, a target in this paper, are avail-
able. We write Φ(k, r) = {χΩ | Ω ∈ Lip(k, r)} and
Φκ(k, r) = {χΩ,ω

κ | Ω ∈ Lip(k, r)}. For m ∈ N, the usual
Sobolev norm of v ∈ Hm(G) is denoted by ∥v∥m,G.

Theorem 2 (Chenais [3]) For Ω ∈ Lip(k, r) there
exists a linear continuous extension operator pΩ :
Hm(Ω) ∋ v 7→ ṽ = pΩ(v) ∈ Hm(Rd) with operator
norm ∥pΩ∥ ≤ c(k, r), where c(k, r) depends only on m,
k, r and d.

Recall that we have set uΩ
κ = uΩ,ω

κ |Ω and uω
κ = uΩ,ω

κ |ω.
Theorem 3 Let Ω ∈ OD and 0 < κ ≤ 1. Then we
have

∥uΩ
κ ∥21,Ω + κ∥uω

κ∥21,ω ≤ 2(∥f∥20,D + ∥g∥2−1/2,ΓN
). (7)

Let c̄(k, r) be a constant in Theorem 2 with m = 1 and let
c̄1(k, r) = 1+2c̄(k, r)2. Further we assume Ω ∈ Lip(k, r).
Then we have

∥uΩ
κ − uΩ∥21,Ω + κ∥uω

κ∥21,ω
≤ 3κ(c1(k, r)∥f∥20,D + 2c(k, r)2∥g∥2−1/2,ΓN

). (8)

Proof Let ∥v∥1,Ω,ω,κ = (∥v∥21,Ω + κ∥v∥21,ω)1/2. Then
max{|aΩ,ω

κ (uΩ,ω
κ , v)| | ∥v∥1,Ω,ω,κ = 1 and v ∈ V } ≤

21/2(∥f∥20,D + ∥g∥2−1/2,ΓN
)1/2. Moreover the maximum

of the left-hand side attains at v = uΩ,ω
κ . This shows

(7). Putting v = uΩ into (4) implies

∥uΩ∥21,Ω ≤ 2(∥f∥20,D + ∥g∥2−1/2,ΓN
). (9)

We show (8). Connecting (9) with Theorem 2 with m =
1 we have an extension ũΩ(∈ V ) of uΩ such that

∥ũΩ∥21,ω ≤ 2c(k, r)2(∥f∥20,D + ∥g∥2−1/2,ΓN
). (10)

Recall that notation aG(·, ·), where G = Ω, ω. Putting
the right-hand side of (4) into the sum of the first and
the last terms in the right-hand side of (5) implies

aΩ(uΩ
κ − uΩ, v) + κaω(uω

κ , v) = κ(f, v)ω, v ∈ V. (11)

Putting v = uΩ,ω
κ − ũΩ into (11) gives

∥uΩ
κ − uΩ∥21,Ω + κ∥uω

κ∥21,ω ≤ 3κ(∥f∥20,ω + ∥ũΩ∥21,ω).
(12)

The inequalities (9), (10) and (12) imply (8).
(QED)

Definition 4 Let E be a bounded closed subset of Rd

and F be the totality of compact subsets of E. For F ∈ F
we set [F ]c = {x ∈ Rd | ∃y ∈ F such that |y − x| ≤ c}.
For Fi ∈ F , i = 1, 2, the Hausdorff metric d(F1, F2)
between F1 and F2 is defined by

d(F1, F2) = inf{c > 0 | F1 ⊂ [F2]c, F2 ⊂ [F1]c}.

We define an equivalent relation Ω1 ∼ Ω2 for Ωi ∈
OD, i = 1, 2, defined by d(Ω1,Ω2) = 0. The equivalent
relation ∼ determines a metric d̃(·, ·) by d̃(Ω1,Ω2) =
d(Ω1,Ω2) on OD/ ∼. Hereafter we use a notation d(Ω1,
Ω2) instead of d̃(Ω1,Ω2), if no confusion occurs.

Theorem 5 (Blachke selection theorem [4]) The
family F with topology TH induced by metric d is com-
pact.

Due to Chenais [3, Theorems III.1 and III.2], the set
Φ(k, r) = {χΩ ∈ L2(D) | Ω ∈ Lip(k, r)} with the topol-
ogy TC induced from L2(D) is compact. Theorem 5 is
applied to E = D. We see that the identity map I :

(Φ(k, r), TH)
I7→ (Φ(k, r), TC), is continuous by the defi-

nition of the Hausdorff metric. Further, I−1 is also con-
tinuous, because any closed set F in (Φ(k, r), TH) is also
closed in (Φ(k, r), TC). In fact, the set F of (Φ(k, r), TH)
is compact in (Φ(k, r), TH) clearly. So it is compact in
(Φ(k, r), TC), because I is continuous. Thus the set F is
closed in (Φ(k, r), TC). This means that the inverse I−1

is continuous. Therefore the map I is homeomorphism
between (Φ(k, r), TH) and (Φ(k, r), TC).
Theorem 6 Topologies TC and TH are compact and
equivalent to each other.

4. The continuity of the cost function

and solvability of TOP(D)

We consider the convergence of Jn = J (χΩ,ω
κn

) to J(Ω)
as κn → +0. The estimate (8) shows uΩ,ω

κn
→ uΩ strongly

in V (Ω) as κn → +0. Actually, by (8) we have

|Jn − J(Ω)|
≤ (∥f∥0,Ω + ∥g∥−1/2,ΓN

)∥uΩ,ω
κn

− uΩ∥1,Ω
+ κ

1/2
n ∥f∥0,D · κ1/2

n ∥uΩ,ω
κn

∥1,ω → 0 as κn→+0.

Lemma 7 Let Ω ∈ Lip(k, r). And let {κn}n be a
sequence tends to 0 as n → ∞. Then two sequences
{uΩ,ω

κn
}n and {J (χΩ,ω

κn
)}n converge to uΩ strongly in

V (Ω) and to J(Ω), respectively, as n → ∞. Both the se-
quences converge to their limits uniformly over Lip(k, r)
or Φ(k, r).

Lemma 8 Let κ be fixed and let Ωn,Ω ∈ OD such that
d(Ωn,Ω) → 0 as n → ∞. Then we have uΩn,ωn

κ → uΩ,ω
κ

strongly in V as n → ∞.

Proof Let un = uΩn,ωn
κ and u = uΩ,ω

κ . Since {un}n is
bounded in V by Theorem 3, we have a subsequence of
{un}n, still denoted by {un}n, having a weak limit û ∈
V . To see u = û it suffices to show Rn → 0, where Rn is
given by aΩ,ω

κ (un, ζ) = (f, ζ)Ω+κ(f, ζ)ω+⟨g, ζ⟩ΓN
+Rn.

Here ζ denotes any smooth function of V ∩ C1(D)
with notation: ∥ζ∥C0(D) = maxx∈D |ζ(x)| and ∥ζ∥C1(D)
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= ∥ζ∥C0(D) +maxx∈D,1≤i≤d |∂ζ(x)/∂xi|. A tedious cal-
culation gives

Rn = R1
n +R2

n,
R1

n = (aΩ\Ωn(un, ζ)− aΩn\Ω(un, ζ))
+ κ(aω\ωn(un, ζ)− aωn\ω(un, ζ))

= a
Ω\Ωn,ω\ωn
κ (un, ζ)− a

Ωn\Ω,ωn\ω
κ (un, ζ),

R2
n = l

Ωn\Ω,ωn\ω
κ (ζ)− l

Ω\Ωn,ω\ωn
κ (ζ),

l
Ωn\Ω,ωn\ω
κ (ζ) =

∫
Ωn\Ω fζdx+ κ

∫
ωn\ω fζdx,

l
Ω\Ωn,ω\ωn
κ (ζ) =

∫
Ω\Ωn

fζdx+ κ
∫
ω\ωn

fζdx.

Since |F | = 0 for a measurable set F ⊂ Rd such that
(F )o = ∅, we see that |∂G| = 0, where ∂G = G \ G for
an open subset G in Rd. We have ωn \ ω = Ω \ Ωn a.e. in D,

ω \ ωn = Ωn \ Ω a.e. in D,
ω ⊖ ωn = Ω⊖ Ωn a.e. in D.

(13)

Let ∥v∥1,Ω\Ωn,ω\ωn,κ = (∥v∥21,Ω\Ωn
+ κ∥v∥21,ω\ωn

)1/2 for

v ∈ V . Let c2(f, g)
2 be a constant described as the right-

hand side of the inequality (7). Applying the Schwarz

inequality to a
Ω\Ωn,ω\ωn
κ (un, ζ), we have

|aΩ\Ωn,ω\ωn
κ (un, ζ)(un, ζ)|
≤ ∥un∥1,Ω\Ωn,ω\ωn,κ∥ζ∥1,Ω\Ωn,ω\ωn,κ

≤ c2(f, g)∥ζ∥C1(D)

√
|Ω \ Ωn|.

All the estimates of remaining terms in R1
n and R2

n have
the same upper bounds as above deriving by similar con-
sidering. Thus we have

|Rn| ≤ 4c2(f, g)∥ζ∥C1(D)

√
|Ω⊖ Ωn|.

Let δn = d(Ωn,Ω), then the definition of the Hausdorff
metric implies Ωn\Ω ⊂ [Ω]δn\Ω and Ω\Ωn ⊂ [Ωn]δn\Ωn.
The assumption says δn → 0. Thus we have |Ωn⊖Ω| → 0
as n → ∞. So we see Rn → 0 as n → ∞. Thus the full
sequence {uΩn,ωn

κ }n converges to u weakly in V .
Next we show un → u strongly in V . For the aim we

notice that the bilinear form aΩ,ω
κ (·, ·) is an inner prod-

uct equivalent to the usual one, because κ is a positive
constant. So the value (aΩ,ω

κ (v, v))1/2 could play as a
norm on V . Since V is a Hilbert space, so if we can show
that

limn→∞ aΩ,ω
κ (un, un) = aΩ,ω

κ (u, u), (14)

then un converges to u strongly in V . Actually it is true.
In fact, let l̄Ω,ω

κ (v) = lΩ,ω
κ (v) + ⟨g, v⟩ΓN

. Then l̄Ω,ω
κ (v)

belongs to the dual space V ′ of V and we notice that un

converges to u weakly in V , thus we have

limn→∞ l̄Ω,ω
κ (un) = l̄Ω,ω

κ (u). (15)

Beside we see limn→∞ aΩ,ω
κ (un, un) = limn→∞ l̄Ω,ω

κ (un)
and l̄Ω,ω

κ (u) = aΩ,ω
κ (u, u). The equality (14) holds true.

(QED)

Lemma 9 Let Ωn,Ω ∈ Lip(k, r) such that d(Ωn,Ω) →
0 as n → ∞. Then we have J(Ωn) → J(Ω) as n → ∞.

Proof Since we have J(Ωn) − J(Ω) = (J(Ωn) −
J (χΩn,ωn

κ )) + (J (χΩn,ωn
κ ) − J (χΩ,ω

κ )) + (J (χΩ,ω
κ ) −

J(Ω)) = j1(n, κ) + j2(n, κ) + j3(κ), for any ϵ > 0 it
suffices to show the existence of nϵ and κϵ such that, for

all n(≥ nϵ), we have

max{|j1(n, κϵ)|, |j3(n, κϵ)|} ≤ ϵ

3
, (16)

|j2(n, κϵ)| ≤
ϵ

3
. (17)

Let 3κc3(f, g)
2 be a constant described at the right-

hand side of (8). Then, applying the Schwarz inequality
and the definition of ∥ · ∥−1/2,ΓN

to j1(n, κ) and j3(κ),
we have

max{|j1(n, κ)|, |j3(κ)|}
≤

√
3κc3(f, g)[(1 +

√
κ)∥f∥0,D + ∥g∥−1/2,ΓN

].

Thus there exists κϵ(> 0) satisfying (16), independent
of n ∈ N. Finally we have nϵ ∈ N such that (17) holds
by Lemma 8 with κ = κϵ. The proof is completed.

(QED)

Although the problem TOP(D) is known well, we
don’t assure the existence of solutions to the problem
together with its uniqueness generally.

Theorem 10 For U = Lip(k, r) there exists a solution
Ω∗ ∈ Lip(k, r) of TOP(D) (3).

Proof First, we see infΩ∈Lip(k,r) J(Ω) ≥ 0, because
we see J(Ω) = ∥uΩ∥21,Ω. So there exists a minimiz-
ing sequence of {J(Ωn)}n,Ωn ∈ Lip(k, r). Applying
Theorem 6 together with Lemma 9 to {J(Ωn)}n, we
have the assertion. Here we notice J(Ω∗) > 0 provided
∥f∥0,D + ∥g∥−1/2,ΓN

> 0.
(QED)

5. Approximation of TOP(D) by simple

functions

We consider the minimizing problem Pκ(D): Find
ϕ∗ ∈ Φκ such that

J (ϕ∗
κ) = infϕ∈Φκ J (ϕ). (18)

We show that the existence of a solution of Pκ(D)
and that the problem TOP(D) is approximated by the
problems Pκn(D) as κn → 0 provided that Φκ is re-
placed by Φκ(k, r). Now, we denote a topology on the
set Φκ induced through L2(D) by T Φκ

L2 .

Lemma 11 Let ϕn = χΩn,ωn
κ , ϕ = χΩ,ω

κ ∈ Φκ for
n ∈ N. Then ϕn → ϕ as n → ∞ with respect to T Φκ

L2 , if
and only if Ωn → Ω as n → ∞ with respect to TH . Thus
Φκ is compact with respect to T Φκ

L2 .

Proof The relation (13) implies |ϕn − ϕ| = (1 −
κ)(|χΩn\Ω|+ |χΩ\Ωn |) a.e. in D. So ∥ϕn−ϕ∥2L2(D) = (1−
κ)2|Ωn ⊖ Ω|. Since d(Ωn,Ω) → 0 implies |Ωn ⊖ Ω| → 0,
then ∥ϕn − ϕ∥2L2(D) → 0.

Next we show the inverse assertion. Assume ∥ϕn −
ϕ∥2L2(D) → 0 doesn’t imply d(Ωn,Ω) → 0. Then, by The-

orem 5 with E = D there exists a subsequence {Ωnm}m
of {Ωn}n, where d(Ωnm , Ω̂) → 0 for some Ω̂ ∈ OD,

Ω̂ ̸= Ω. Let ϕ̂ = χΩ̂,ω̂
κ . So ∥ϕnm − ϕ̂∥L2(D) → 0. It con-

tradicts to ϕ̂ ̸= ϕ and limm→∞ϕnm = ϕ.
(QED)

It is to be noticed that the equivalence between TH
and T Φκ

L2 restricted to Φ(k, r) is shown already by The-
orem 6.
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Theorem 12 Let κ be fixed. Then the minimization
problem Pκ(D) (18) admits a solution ϕ∗ ∈ Φκ.

Proof Lemmas 8 and 11 imply the existence of a so-
lution ϕ∗ ∈ Φκ of the problem Pκ(D).

(QED)

Lemma 13 Let ϕn = χΩn,ωn
κn

∈ Φκn(k, r), ϕ = χΩ ∈
Φ(k, r) and let un = uΩn,ωn

κn
∈ V . We assume that κn →

0 and d(Ωn,Ω) → 0. Then {un}n weakly converges to
u ∈ V , where u|Ω and u|ω, ω = D \ Ω are given by (4)
and the equalities below, respectively.

u|ω = U |ω, (19)

where U ∈ V is determined by aD(U, v) = (f, v)ω, v ∈ V .
Further we have

limn→∞ J (ϕn) = J(Ω). (20)

Proof Recall that c̄2(f, g)
2 and 3κc̄3(f, g)

2 be con-
stants used in the right-hand sides of (7) and (8) (cf.
the proofs of Lemmas 8 and 9), respectively. The esti-
mate (7) shows that c̄2(f, g) denotes an upper bound of
{∥un∥1,Ωn}n. After applying (8) to {Ωn, ωn}, deviding
the both hands side of (8) by κn, we see

∥un−uΩn∥2
1,Ωn

κn
+ ∥un∥21,ωn

≤ 3c̄3(f, g)
2. (21)

So 31/2c̄3(f, g) denotes an upper bound of {∥un∥1,ωn}n.
Thus {un}n is bounded in V . We have a weakly conver-
gent subsequence, still denoted by {un}n, with its weak
limit u. We show u|Ω = uΩ. For this aim it suffices to
show Rn → 0 as n → ∞, where Rn denotes a constant
given by below.

aΩ(un, ζ) = (f, ζ)Ω + ⟨g, ζ⟩ΓN
+Rn,

Rn = R1
n +R2

n,
R1

n = aΩ\Ωn(un, ζ)− aΩn\Ω(un, ζ)− κna
ωn(un, ζ),

R2
n = (f, ζ)Ωn\Ω − (f, ζ)Ω\Ωn

+ κn(f, ζ)ωn ,

where ζ denotes a function belonging to V ∩ C1(D). It
is shown similarly as in the proof of Lemma 8. Thus,
u|Ω satisfies (4). Now we show (19). We consider spaces
Vn = {v ∈ L2(D) | v|Ωn ∈ V (Ωn), v|ωn ∈ H1(ωn)}, n ∈
N and orthogonal projections pnv = v̄ from Vn onto the
space V defined by aD(v̄, w) = aΩn(v, w)+aωn(v, w) for
all w ∈ V . Applying (11) to v = ζ ∈ V ∩C1(D), we have

aΩn(un−uΩn

κn
, ζ) + aωn(un, ζ)

= aΩn(pn(
un−uΩn

κn
), ζ) + aωn(pn(un), ζ)

= (f, ζ)ωn . (22)

Because of (22) it suffices to Rn → 0, where Rn is given
by

aω(un, ζ) + aΩ(U, ζ)− (f, ζ)ω = Rn,
Rn = R1

n +R2
n +R3

n +R4
n,

R1
n = aω\ωn(un, ζ)− aωn\ω(un, ζ),

R2
n = −aΩ\Ωn(U, ζ)− aΩn\Ω(U, ζ),

R3
n = −aΩn(U − pn(

un−uΩn

κn
)), ζ),

R4
n = −(f, ζ)ωn\ω + (f, ζ)ω\ωn

.

It is shown also similarly as in the proof of Lemma 8
together with a fact such that pn(zn) weakly converges
to U , where zn(x) = (un − uΩn)/κn for x ∈ Ωn and
zn(x) = un(x) for x ∈ ωn. Finally we shall show (20).

First we see

J (ϕn)− J(Ω)
= (f, un)Ωn\Ω − (f, u)Ω\Ωn

+ (f, un − u)Ωn∩Ω

+ κn(f, un)ωn + ⟨g, un − u⟩ΓN
. (23)

The last two terms of the right hand side of (23) vanish
respectively, because of the weak convergence of un to
u in V , g ∈ V ′ and (8). For the third term we have
|(f, un − u)Ωn∩Ω| ≤ ∥f∥0,D∥un − u∥0,D → 0, because
of the Rellich theorem. The Sobolev imbedding theorem
implies that ∥v∥L2(G) ≤ c̄∥v∥V |G|1/3, where G and c̄

denote an open subset of Rd and a constant independent
of v ∈ V , respectively. Thus, we have

|(f, un)Ωn\Ω − (f, u)Ω\Ωn
|

≤ ∥f∥0,D(∥un∥0,Ωn\Ω + ∥u∥0,Ω\Ωn
)

≤ c̄∥f∥0,D max{∥un∥V , ∥u∥V }|Ωn ⊖ Ω|1/3.

The estimate (7) and d(Ωn,Ω) → 0 imply that the sum
of the first two terms goes to zero.

(QED)

The uniqueness of solutions of TOP(D) is not known
in general, we have to rely on subsequences of a mini-
mizing sequence for cost as follows.

Theorem 14 Let {κn}n be a sequence decreasing to
zero. We assume that ϕn = χΩn,ωn

κn
∈ Φκn(k, r) satisfies

J (ϕn) = infϕ∈Φκn (k,r) J (ϕ), where un and J (ϕn) are
given by (5) and (6) with ϕ = ϕn, respectively. Then we
have lim infn→∞ J (ϕn)= infΩ∈Lip(k,r) J(Ω). Moreover
we have Ω∗ ∈ Lip(k, r) and a subsequence {ϕnm}m of
{ϕn}n such that lim infn→∞ J (ϕn)= limm→∞ J (ϕnm)
and d(Ωnm ,Ω∗) → 0, where Ω∗ is a solution of the prob-
lem TOP(D).
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