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Abstract

The Jacobi preconditioner is well known as a preconditioner with high parallel efficiency to
solve very large linear systems. However, the Jacobi preconditioner does not always show
the great improvement of the convergence rate, because of the poor convergence property of
the Jacobi method. In this paper, in order to improve the quality of the Jacobi precondi-
tioner without loss its parallel efficiency, we introduce a weighted Jacobi-type preconditioner,
and propose an optimization technique for the weight parameter. The numerical experiments
indicate that the proposed preconditioner has higher quality and is more efficient than the
traditional Jacobi preconditioner.

Keywords large linear systems, a weighted Jacobi-type preconditioner, parameter optimiza-
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1. Introduction

In this paper, we consider the preconditioning tech-
niques for the Krylov subspace methods to solve the very
large, but sparse, linear systems of the form:

Ax = b, A ∈ Rn×n, x, b ∈ Rn, (1)

where the coefficient matrix A is assumed to be non-
symmetric and nonsingular. These linear systems often
arise from the discretization of the partial differential
equations in the fields of the computational science and
engineering.
Recent large scale simulations require to solve very

large linear systems (1), and these are often one of the
most time-consuming parts of the simulations. In this
case, high parallel efficiency is recognized as extremely
important more than high speed and/or high accuracy
for the Krylov subspace methods and also precondition-
ing techniques.
The Jacobi preconditioner, which is the variable-type

preconditioning technique using some iterations of the
Jacobi method, especially shows the very high parallel
efficiency, because the Jacobi method does not have any
sequential operations like forward and/or backward sub-
stitution in each iteration. The Jacobi preconditioner
also has some advantages for solving very large linear
systems (1) that it is not required to construct any pre-
conditioning matrices and it is available even if the coef-
ficient matrix is used only as the matrix-vector formula.
However, since the Jacobi method has the strict con-

vergence condition and the poor convergence property,
the Jacobi preconditioner does not always show the great
improvement of the convergence rate. In this paper, in
order to improve the quality of the Jacobi precondi-

tioner without loss of its parallel efficiency, we introduce
a weighted Jacobi-type preconditioner, and propose an
optimization technique for the weight parameter of the
weighted Jacobi-type preconditioner.
This paper is organized as follows. In the next sec-

tion, we briefly describe the Jacobi preconditioner and
introduce a weighted Jacobi-type preconditioner. In Sec-
tion 3, we propose a parameter optimization technique
for the weighted Jacobi-type preconditioner. Then, we
test the performance of the proposed preconditioner
from some numerical experiments in Section 4 and fi-
nally we make some conclusions in Section 5.

2. The Jacobi preconditioner and a

weighted Jacobi-type preconditioner

Preconditioning techniques play a very important role
in improving the convergence rate of the Krylov sub-
space methods. They transform the linear systems (1)
into more suitable systems for the Krylov subspace
methods, i.e.,

K−1
1 AK−1

2 y = K−1
1 b, x = K−1

2 y,

where K = K1K2 is called as the preconditioning ma-
trix, and is generally required to K−1

1 AK−1
2 ≈ I in some

sense. For details we refer to [1] and references therein.
The incomplete factorization-type preconditioners,

typified by the ILU(0) preconditioner, construct the pre-
conditioning matrix K ≈ A, such that the systems
Kz = w appeared in each iterations of the Krylov sub-
space methods should be easy to solve, e.g., by using the
incomplete LU decomposition
On the other hand, the variable-type preconditioners
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roughly solve the system

Az = w (2)

by an iterative method to obtain the approximation of
A−1w, instead of solving Kz = w. For solving (2),
the stationary iterative methods, such as the Jacobi
method, the Gauss-Seidel method and the SOR method,
are widely used and reported their efficiency [2].
In what follows, we briefly describe and introduce two

variable-type preconditioners: the Jacobi preconditioner
and a weighted Jacobi-type preconditioner.

2.1 The Jacobi preconditioner
The stationary iterative methods are based on trans-

forming (1) into a fixed-point equation:

x = f(x),

and the solution of the linear system (1) is computed
as the fixed-point of a vector-valued function f by an
iterative method.
Let M be a nonsingular matrix and N be a ma-

trix such that A = M − N . Then by setting f(x) =
M−1Nx + M−1b, the fixed-point (solution of (1)) can
be computed from the recurrence formula

xk+1 = f(xk) = M−1Nxk +M−1b, k = 0, 1, 2, . . .

with an initial vector x0.
Let G := M−1N and ρ(G) be the iteration matrix and

its spectral radius. Then the stationary iterative meth-
ods converge to the exact solution x∗ = A−1b for any
initial vector x0 if and only if the spectral radius of the
iteration matrix satisfies the inequality ρ(G) < 1. For the
convergence rate of the stationary iterative methods, we
also have the following relation:

lim
k→∞

(
max
x0∈Rn

∥ek∥2
∥e0∥2

)1/k

= ρ(G),

where e0 := x0 − x∗ and ek := xk − x∗ are the ini-
tial error vector and the error vector at the kth step,
respectively [3].
The Jacobi method is the simplest stationary itera-

tive method. Let AD,−AL,−AU be the diagonal part,
the strict lower triangular part and the strict upper tri-
angular part of A, respectively. Then the Jacobi method
defines the matrices M := AD, N := AL + AU , and its
recurrence formula is given next.

xk+1 = A−1
D (AL +AU )xk +A−1

D b. (3)

The Jacobi preconditioner is termed as the variable-
type preconditioner using some iterations of the Jacobi
method to solve (2). Since any sequential operations like
forward and/or backward substitution does not exist in
the recurrence formula (3), the Jacobi method and also
the Jacobi preconditioner have high parallel efficiency.

2.2 A weighted Jacobi-type preconditioner
The Jacobi preconditioner has high parallel efficiency;

however, the Jacobi preconditioner does not always show
the great improvement of the convergence rate, because
the spectrum radius of the iteration matrix of the Jacobi
method is often ρ(G) > 1.
In this section in order to improve the quality of the

Jacobi preconditioner, we introduce an improvement of
the Jacobi method, which is named as a weighted Jacobi-
type method. We also introduce a weighted Jacobi-type
preconditioner.
The weighted Jacobi method is well known as an im-

provement of the Jacobi method, and its recurrence for-
mula is shown by

xk+1 = ω
[
A−1

D (AL +AU )xk +A−1
D b

]
+ (1− ω)xk

= xk + ωA−1
D (b−Axk),

where ω ∈ R is called the weight parameter [3, Sec-
tion 13.2]. This improvement method is also called the
damped Jacobi method or the relaxed Jacobi method.
Here, we note that the high parallel efficiency of the

(weighted) Jacobi method comes from the fact that the
matrix M is a diagonal. From this observation, we can
extend the (weighted) Jacobi method without loss of its
high parallel efficiency as follows:

xk+1 = xk + ωD−1(b−Axk), (4)

where D ∈ Rn×n is any nonsingular diagonal matrix.
In this paper, we name the method based on recur-

rence formula (4) as a weighted Jacobi-type method. We
also name the variable-type preconditioner using some
iterations of the weighted Jacobi-type method to solve
(2) as a weighted Jacobi-type preconditioner.

3. A parameter optimization technique

The weighted Jacobi-type preconditioner introduced
in Section 2 may have a high potential to achieve a great
improvement of the Krylov subspace method. However,
the quality depends strongly on the weight parameter ω
and also the diagonal matrix D.
In this section, we analyse the relationship between

the weight parameter and the convergence rate of the
weighted Jacobi-type method. Then from the analysis,
we propose a parameter optimization technique for the
weighted Jacobi-type preconditioner.

3.1 Convergence analysis on the weighted Jacobi-type
method

The weighted Jacobi-type method can also be recog-
nized as the stationary iterative method with the initial
matrix partition

A = Mω −Nω, Mω =
1

ω
D, Nω =

1

ω
D −A,

and its iteration matrix can be written by

Gω := M−1
ω Nω = I − ωD−1A. (5)

Therefore, the convergence rate of the weighted Jacobi-
type method is based on ρ(Gω).
Here, for the relationship between the weight param-

eter ω and the corresponding spectral radius ρ(Gω), we
derive the following theorem.

Theorem 3.1 Let A ∈ Rn×n be a nonsingular matrix,
and D ∈ Rn×n be a nonsingular diagonal matrix. We
also let C(γ, ρ) be the inner region of the circle with the
center γ ∈ R and the radius ρ ∈ R on the complex plane,
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and the pair of γ∗, ρ∗ be defined by

(γ∗, ρ∗) := arg min
γ,ρ∈R

∣∣∣∣ργ
∣∣∣∣

such that

λi(D
−1A) ∈ C(γ, ρ), i = 1, 2, . . . , n,

where λi(D
−1A) are the eigenvalues of D−1A.

Then we have

argmin
ω∈R

ρ(Gω) =
1

γ∗ , min
ω∈R

ρ(Gω) =

∣∣∣∣ρ∗γ∗

∣∣∣∣ . (6)

Proof From (5), the spectral radius ρ(Gω) can be
rewritten as follows:

ρ(Gω) = ρ(I − ωD−1A)

= max
i

|1− ωλi(D
−1A)|

= |ω|max
i

|1/ω − λi(D
−1A)|.

Then, we have

min
ω∈R

ρ(Gω) = min
ω,ρ∈R

|ωρ| s.t. λi(D
−1A) ∈ C(1/ω, ρ)

= min
γ,ρ∈R

∣∣∣∣ργ
∣∣∣∣ s.t. λi(D

−1A) ∈ C(γ, ρ).

Therefore, (6) is proved.
(QED)

We also derive the following theorem for the con-
vergence condition of the weighted Jacobi-type method
with the optimized weight parameter.

Theorem 3.2 Let ωopt := 1/γ∗ be the optimized
weight parameter of the weighted Jacobi-type method.
Then, the spectral radius of the weighted Jacobi-type
method with the optimized weight parameter ωopt sat-
isfies the following inequality:

ρ(Gωopt) =

∣∣∣∣ρ∗γ∗

∣∣∣∣ < 1 (7)

if and only if λi(D
−1A) satisfies

Re(λi(D
−1A)) > 0, i = 1, 2, . . . , n (8)

or

Re(λi(D
−1A)) < 0, i = 1, 2, . . . , n. (9)

Proof We firstly prove (8) or (9) ⇒ (7). From the re-
lation

{z ∈ C|Re(z) > 0} ⊂ lim
γ→∞

C(γ, γ),

{z ∈ C|Re(z) < 0} ⊂ lim
γ→∞

C(−γ, γ),

there exists a circle C(γ, ρ) such that

λi(D
−1A) ∈ C(γ, ρ),

∣∣∣∣ρ∗γ∗

∣∣∣∣ ≤ ∣∣∣∣ργ
∣∣∣∣ < 1

for any λi(D
−1A) satisfying (8) or (9).

Next, we prove (7) ⇒ (8) or (9). From (7), there is a
circle C(γ, ρ) such that

λi(D
−1A) ∈ C(γ, ρ),

∣∣∣∣ργ
∣∣∣∣ < 1.

Fig. 1. Relationship between eigenvalues of D−1A and γ∗, ρ∗.
The symbols ⋆ and • denote the extreme and interior eigenval-
ues, respectively.

We also have

C(γ, ρ) ⊂ {z ∈ C|Re(z) > 0},

C(−γ, ρ) ⊂ {z ∈ C|Re(z) < 0},

for any γ, ρ ∈ R, 0 < ρ < γ. Therefore, if ρ(Gωopt) < 1,
then all eigenvalues λi(D

−1A) satisfy (8) or (9).
(QED)

Theorems 3.1 and 3.2 mean that the weight parameter
ω of the weighted Jacobi-type method can be optimized
by the extreme eigenvalues of D−1A; see Fig. 1.

3.2 An optimization technique for the weight parameter
of the weighted Jacobi-type preconditioner

Based on the results of Theorems 3.1 and 3.2, we pro-
pose an optimization technique for the weight parameter
of the weighted Jacobi-type preconditioner.
The basic idea of our optimization technique is based

on the so-called the off-line tuning, and it can be shown
as follows:

Algorithm 1 A parameter optimization technique

1: Initialization:
Set an initial guess x0 and a diagonal matrix D.

2: Optimization:

a: Compute (approximately) the extreme eigenval-
ues of D−1A.

b: Optimize (approximately) the weight parameter
ωopt from the computed extreme eigenvalues.

3: Application:
Apply the weighted Jacobi-type preconditioned
Krylov subspace method with the optimized weight
parameter ωopt to the linear systems (1).

Here the extreme eigenvalues can be efficiently computed
by some iterations of the Arnoldi method. Parallelization
techniques of the Arnoldi method have been widely stud-
ied, and are implemented in the Parallel ARPACK [4].
In Algorithm 1, at the same time as optimizing

ωopt, we can obtain the corresponding spectral radius
ρ(Gωopt). Therefore, if we have some choices for the di-
agonal matrix D, we can also select the best by applying
the optimization with respect to each diagonal matrixD.
It is also expected that the optimization technique can

be naturally extended to variable-type preconditioners
using other weighted stationary iterative methods by al-
most the same way.
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Table 1. Characteristics of the test problems.

Matrix name n Nnz Application area

AF23560 23560 484256 Fluid dynamics
CHIPCOOL1 20082 281150 Model reduction
POISSON3DA 13514 352762 Fluid dynamics

XENON2 157464 3866688 Materials

4. Numerical experiments and results

In this section, we evaluate the performance of the
proposed preconditioner, and compare it with the Jacobi
preconditioner by test problems from [5].
The characteristics of the coefficient matrices of the

test problems are shown in Table 1. The values n,Nnz
denote the number of dimension and the number of
nonzero elements, respectively. We set b = [1, 1, . . . , 1]T

as the right-hand side, x0 = [0, 0, . . . , 0]T for the
initial guess, and the stopping criterion was set as
∥rk∥2/∥b∥2 ≤ 10−10.
For the proposed preconditioner, we set the diago-

nal matrix D = AD as well as the Jacobi precondi-
tioner. The number of iterations of the Jacobi method
and the weighted Jacobi-type method for the precon-
ditioners are set as 20. The number of iterations of the
Arnoldi method for optimization is also set as 20. We use
the GMRES method for the Krylov subspace method.
The numerical experiments were implemented with

the standard Fortran 77 in double precision arithmetic
on the Intel Xeon X5550 (2.67GHz).

4.1 Numerical results

We present the numerical results in Table 2. In this
table, a symbol † denotes that the method did not con-
verge within 1000 iterations.
Firstly, we consider the relationship between the spec-

tral radius ρ(G) and number of iterations Iter. The spec-
tral radius of the Jacobi preconditioner shows ρ(G) > 1,
except for CHIPCOOL1. For these problems, the Jacobi
preconditioned GMRES method shows the poor conver-
gence property, because the convergence condition of the
Jacobi method did not be satisfied.
On the other hand, by optimizing the weight param-

eter ω, the spectral radius of the proposed precondi-
tioner satisfies ρ(G) < 1 for all test problems. Then the
proposed preconditioner leads to the better convergence
property than the Jacobi preconditioner.
Next we consider the computation time for the opti-

mization toptimize and the total computation time ttotal.
We can see from Table 2 that toptimize is relatively
smaller than ttotal for all test problems. This is based
on the fact that the most time-consuming part of the
optimization is to compute the extreme eigenvalues by
20 iterations of the Arnoldi method. This computational
cost is almost comparable with the cost of one iteration
of the Jacobi and the weighted Jacobi-type precondi-
tioned GMRES method.
From the better convergence and the negligibly small

computation time for optimization, the proposed precon-
ditioner can solve the linear systems with much smaller
computation time than the Jacobi preconditioner.

Table 2. Convergence results (Precond: preconditioner, Iter :
number of iterations, toptimize : computation time for optimiza-
tion, ttotal : total computation time) of the preconditioned GM-

RES method.

AF23560

Precond ω ρ(G) Iter
Time [sec.]

toptimize ttotal

Non −− −− † −− †
Jacobi −− 6.491 † −− †
Proposed 0.046 0.999 660 6.30× 10−2 2.69× 101

CHIPCOOL1

Precond ω ρ(G) Iter
Time [sec.]

toptimize ttotal

Non −− −− † −− †
Jacobi −− 0.994 45 −− 7.35× 10−1

Proposed 1.077 0.994 71 4.40× 10−2 1.23× 100

POISSON3DA

Precond ω ρ(G) Iter
Time [sec.]

toptimize ttotal

Non −− −− 184 −− 7.77× 10−1

Jacobi −− 1.259 239 −− 4.90× 100

Proposed 0.885 0.998 33 4.40× 10−2 6.06× 10−1

XENON2

Precond ω ρ(G) Iter
Time [sec.]

toptimize ttotal

Non −− −− † −− †
Jacobi −− 2.154 † −− †
Proposed 0.634 0.999 386 5.06× 10−1 1.09× 102

5. Conclusions

In this paper, in order to improve the quality of the Ja-
cobi preconditioner without loss of its parallel efficiency,
we have introduced the weighted Jacobi-type precondi-
tioner, and proposed the optimization technique for the
weight parameter of the preconditioner.
From our numerical experiments, we have learned that

the proposed preconditioner has higher quality and is
more efficiently than the traditional Jacobi precondi-
tioner for solving very large but sparse linear systems.
For future work, we should apply the proposed precon-

ditioner to the problems from the real applications and
evaluate its efficiency in highly parallel computation.

Acknowledgments

This work is supported in part by Strategic Programs
for Innovative Research Field 5 “The origin of matter
and the universe”, CREST and KAKENHI (Grant Nos.
20105004, 20105005, 21246018, 22540296 and 23105702).

References

[1] M.Benzi, Preconditioning techniques for large linear systems:
a survey, J. Comput. Phys., 182 (2002), 418–477.

[2] K. Abe and S. -L. Zhang, A variable preconditioning using
the SOR method for GCR-like methods, Int. J. Numer. Anal.
Mod., 2 (2005), 147–161.

[3] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd
ed., SIAM, Philadelphia, 2003.

[4] Parallel ARPACK, http://www.caam.rice.edu/~kristyn/

parpack_home.html.

[5] The University of Florida Sparse Matrix Collection,http://
www.cise.ufl.edu/research/sparse/matrices/.

– 44 –


