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Abstract

We propose a new structure-preserving integrator for the Korteweg-de Vries (KdV) equation.
In this integrator, two independent structure-preserving techniques are newly combined; the
“discrete variational derivative method” for constructing invariants-preserving integrator, and
the “compact finite difference method” which is widely used in the area of numerical fluid
dynamics for resolving wave propagation phenomena. Numerical experiments show that the
new integrator is in fact advantageous than the existing integrators.
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1. Introduction

In this report, we consider the numerical integration
of the Korteweg-de Vries (KdV) equation

∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3
= 0 (1)

on the torus of length L (i.e. we assume the periodic
boundary condition). It is an integrable soliton equation
describing shallow water waves.
For such an integrable equation, certain structure-

preserving numerical methods, for example the “discrete
variational derivative method”(DVDM) [1], are gener-
ally advantageous. In fact, Furihata [2] constructed a
conservative scheme for KdV using DVDM, and con-
firmed that it gave stable and qualitatively better nu-
merical solutions.
On the other hand, in the field of numerical fluid dy-

namics, it is a common practice to use the so-called
“compact finite difference method” for wave equations,
when correct wave behaviors are of importance; in the
method, a numerical scheme is constructed so that it re-
tains as correct dispersion relation as possible while the
“stencil” (width of a difference operator) is kept “com-
pact” (i.e. narrow). For KdV, a compact finite difference
scheme was tested in [3] to prove that it was actually
suitable for the equation.
Although the above two methodologies share the same

target (wave equations) and goal (better qualitative be-
haviors), it seems that the challenges to combine them
have not been done actively so far, except for the sim-
ple cases where only linear or quadratic invariants are
of interest and thus conservation can be relatively easily
accomplished without utilizing any structure-preserving
methods such as DVDM: we can find a number of “con-
servative” compact finite difference schemes for the so-
called “conservation laws” of the form ut + (f(u))x = 0

(which trivially preserve
∫
udx); as an example of the

quadratic cases, we refer to [4], where a Strang split-
ting compact finite difference scheme for the nonlinear
Schrödinger equation preserving

∫
|u|2dx was proposed.

In more general cases, however, the help of the structure-
preserving methods is indispensable. In this report, we
show taking the KdV as our example that the above
mentioned two methodologies can be in fact combined.

2. Compact finite difference operators

Below the idea of compact finite difference operator is
summarized based on Lele [5]. Given a smooth function
f(x), we approximate it by fi (i = 0, . . . , N − 1) on the
equispaced mesh with the mesh size ∆x = L/N . Here-
after we always assume the discrete periodic boundary
condition fi±N = fi, and also that the values outside
i = 0, . . . , N − 1 are periodically defined.
Typical compact finite difference operators for ∂/∂x

are defined in the following form:

δ⟨1⟩c fi + α(δ⟨1⟩c fi+1 + δ⟨1⟩c fi−1) + β(δ⟨1⟩c fi+2 + δ⟨1⟩c fi−2)

= a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
, (2)

where α, β, a, b, and c are real constants that characterize
the compact finite difference operator. Note that, when
α = β = 0, the definition (2) simply means the standard
central difference operators; for example, when

α = β = 0, a =
3

2
, b = −3

5
, c =

1

10
, (C6)

the sixth order (i.e. O(∆x6)) standard central finite dif-
ference operator is recovered. Otherwise, the values of

the compact-differences δ
⟨1⟩
c fi are determined only im-

plicitly; a tri- (when β = 0) or penta-diagonal (other-
wise) linear system should be solved to obtain the val-
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ues of δ
⟨1⟩
c fi (in this sense, the operator is global). An

example of the compact finite difference operator is

α =
1

6
, β = 0, a =

14

9
, b =

1

9
, c = 0, (T6)

which attains the same order of accuracy as (C6) (i.e.
O(∆x6)), while referring to only three grid points (i, i±
1). This is contrastive to (C6) which requires five points
for the accuracy. The name “compact” finite difference
comes from this property. Another interesting choice of
the parameters is (in double precision)

α = 0.5381301488732363, β = 0.066633190123881123,

a = 1.367577724399269, b = 0.8234281701082790,

c = 0.018520783486686603, (S6)

which also attains O(∆x6). Since (S6) refers to five
points, it apparently does not seem “compact” in the
present context. Still it is called so, due to the following
reason. (S6) refers to five grid points, both in the left and
right hand side of (2). In this setting, the best attainable
order of accuracy is O(∆x10). The choice (S6), however,
stays only at O(∆x6), and instead uses the remaining de-
grees of freedom of the coefficients in order to replicate
the dispersion relation of waves as good as possible, prac-
tically at quite close level to the so-called spectral differ-
ence operator, which is purely a global operator involv-
ing FFT (recall that (S6) only involves penta-diagonal
linear system). Due to this, (S6) is called “spectral-like”
(sixth order) compact finite difference operator (see [6,7]
for the detail).
Next, let us consider the skew-symmetry of the dif-

ference operators, which plays a crucial role in the sub-
sequent section. As is well-known, the standard central
difference operator (C6) is skew symmetric: for any N -
periodic sequences {fi}, {gi},

N−1∑
i=0

fiδ
⟨1⟩
c gi∆x = −

N−1∑
i=0

(δ⟨1⟩c fi)gi∆x (3)

(see [8] for a proof). (T6) and (S6) also enjoy this prop-
erty.

Lemma 1 The compact finite difference operators
characterized by (T6) and (S6) are also skew symmetric.

Proof Let us write f = (f0, . . . , fN−1)
⊤ and δ

⟨1⟩
c f =

(δ
⟨1⟩
c f0, . . . , δ

⟨1⟩
c fN−1)

⊤, and rewrite (2) in matrix-vector

form: Tδ
⟨1⟩
c f = Sf/∆x, where T and S are the co-

efficient matrices determined by (2). The matrix T is
invertible in (T6) and (S6). T and S are circulant ma-
trices which means they are commutative. Furthermore,
T is obviously symmetric (T⊤ = T ), and S skew sym-
metric (S⊤ = −S). Gathering these facts, we conclude
(T−1S)⊤ = S⊤T−⊤ = T−⊤S⊤ = −T−1S, which is the
desired skew symmetry.

(QED)

3. A conservative compact finite differ-

ence scheme for the KdV equation

Now we are in a position to demonstrate how we can
construct a conservative scheme using the compact fi-
nite difference operators. Let us consider KdV (1) as

our example. In what follows, we basically follow the
procedure of the discrete variational derivative method
(DVDM) [1]. In this case, KdV (1) should be first rewrit-
ten into the variational form

∂u

∂t
=

∂

∂x

(
−u2

2
− ∂2u

∂x2

)
=

∂

∂x

δG

δu
, G = −u3

6
+

ux
2

2
,

where G is the energy density function. Then it is
straightforward to show that KdV is conservative in the
following sense.

d

dt

∫ L

0

Gdx =

∫ L

0

δG

δu
utdx =

∫ L

0

δG

δu

(
∂

∂x

δG

δu

)
dx = 0.

(4)

In the DVDM, we try to mimic the variational form in
discrete setting. Let us denote the approximate solution
by Um

i ≃ u(i∆x,m∆t) (∆t is the size of the time mesh).
We also writeUm = (Um

0 , . . . , Um
N−1)

⊤ to save space. We
then commence by defining a discrete energy function

with δ
⟨1⟩
c :

(Gd(U
m))i = −1

6
(Um

i )3 +
1

2
(δ⟨1⟩c Um

i )2.

There is a degree of freedom in this definition, but in this
short report, we only consider this simplest case (see also
the concluding remark below). Next, we define a discrete
version of the variational derivative by

δGd

δ(Um+1,Um)i
=− (Um+1

i )2 + Um+1
i Um

i + (Um
i )2

6

− (δ⟨1⟩c )2
(
Um+1
i + Um

i

2

)
, (5)

which is obviously an approximation to the true varia-
tional derivative. It is an easy exercise to show the dis-
crete derivative (5) satisfies

N−1∑
i=0

(Gd(U
m+1)i −Gd(U

m)i)∆x

=

N−1∑
i=0

δGd

δ(Um+1,Um)i
(Um+1

i − Um
i )∆x. (6)

Finally, we define a scheme as follows: for m = 0, 1,
2, . . . ,

Um+1
i − Um

i

∆t
= δ⟨1⟩c

δGd

δ(Um+1,Um)i
(i = 0, . . . , N − 1).

(7)

The scheme is conservative in the following sense,
which corresponds to (4).

Theorem 1 The solutions of the scheme (7) enjoy

N−1∑
i=0

Gd(U
m+1)i∆x =

N−1∑
i=0

Gd(U
m)i∆x

(m = 0, 1, 2, . . . ).

Proof From (6) and (7), we see

1

∆t

N−1∑
i=0

(Gd(U
m+1)i −Gd(U

m)i)∆x
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=
N−1∑
i=0

δGd

δ(Um+1,Um)i

(
Um+1
i − Um

i

∆t

)
∆x

=
N−1∑
i=0

δGd

δ(Um+1,Um)i
δ⟨1⟩c

δGd

δ(Um+1,Um)i
∆x

= 0. (8)

The last equality follows from the skew symmetry of δ
⟨1⟩
c

(Lemma 1).
(QED)

We show a numerical example. We take L = 50,
and employ the initial condition u(x, 0) = 3 sech2(0.5x)
(strictly speaking, we truncate and place it on the torus
at x = 0). Other parameters are set to ∆x = 0.5 (i.e.
N = 100), ∆t = 1/50. Then scheme (7) is tested with

(C6) and (S6) as δ
⟨1⟩
c . Note that, as mentioned above,

(C6) is just a standard central difference operator, and
in this case the conservation has been already proved
in [8]. Since the scheme (7) is O(∆t2), we also try the
Heun method as the time stepping applied to an ordi-
nary differential equation

dU

dt
= −U ∗ δ⟨1⟩c U − δ⟨1⟩c δ⟨2⟩c U , (9)

where U(t) = (u0(t), . . . , uN−1(t))
⊤ is the semi-

discretization of u(x, t), and the symbol ∗ represents

the Hadamard product (the elementwise product). δ
⟨2⟩
c

is the difference operator for ∂2/∂x2, which is chosen
to the standard sixth order central difference operator

when δ
⟨1⟩
c is approximated by (C6), and to the sixth or-

der spectral-like compact finite difference operator when

δ
⟨1⟩
c is taken to (S6) (see [7] for the definition; we omit
its description here due to the restriction of space. See
also the concluding remark below). In summary, we test
the following four schemes:

• Heun method applied to (9) with (C6) as δ
⟨1⟩
c ,

• Heun method applied to (9) with (S6),

• Scheme (7) with (C6),

• Scheme (7) with (S6).

Only the last two are conservative.
Fig. 1 shows the evolution of numerical solutions. The

results by the Heun method (the top two graphs) are
catastrophic. They obviously need much finer time mesh
for stable computation. This instability can be also un-
derstood from Fig. 2, which shows the energy evolutions;
in the Heun schemes, the energies rapidly diverge, which
agrees with the severe instability. On the other hand, the
results by the scheme (7) successfully preserve the energy
as planned (Fig. 2), and capture the soliton propagation

at satisfactory level in both cases of δ
⟨1⟩
c ((C6) and (S6),

the bottom two graphs in Fig. 1). This means that the
special structure-preserving time stepping of scheme (7)
is in fact advantageous than the generic Heun method.
Next, let us have a closer look at the difference be-

tween (C6) and (S6) to see if the compact finite differ-
ence operator (S6) is in fact advantageous than (C6). In
order to see this, we try a coarser space mesh: the pa-
rameters are set to L = 90, ∆x = 0.9 (i.e. N = 100),
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Fig. 1. Evolution of the soliton solution: (top) Heun+(9)+(C6),
(2nd) Heun+(9)+(S6), (3rd) scheme (7)+(C6), (bottom)
scheme (7)+(S6).

∆t = 1/40. The initial data is chosen to the same one as
before. Fig. 3 is the magnified detail of the soliton pro-
files by scheme (7) with (C6) (shown in red) and (S6)
(in blue), around u = 0 at t = 10. In the figure, it can
be clearly observed that the result by (C6) exhibits un-
desirable small oscillations in the right half of the space
interval, i.e., at the tail of the moving soliton. It should
be attributed to the fact that the standard central fi-
nite difference operator (C6) does not preserve correct
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Fig. 2. Evolution of the discrete energies.
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Fig. 3. Soliton profile detail around u = 0 at t = 10; (red) detail

by (C6), (blue) by (S6).

dispersion relation. The result by (S6) gives a far better
result, from which we conclude that the compact finite
difference method is really suitable for wave propagation
phenomena.
Wrapping up the above observations, we conclude

that the combination of the structure-preserving method
(DVDM) and the compact finite difference method is a
strong new integrator for KdV. It is expected that the
combination is also useful for other wave equations.

4. Further discussions

In this report, we showed that the so-called compact
finite difference method can be incorporated into the
discrete variational derivative method (DVDM) to con-
struct conservative numerical scheme which well repli-
cates the wave behaviors. The key was the skew symme-
try of the compact finite difference operators. Although
this can be easily understood, as was shown in Lemma 1,
the authors do not know any reference in which this fact
was explicitly written. We also showed several numer-
ical examples, which confirmed the effectiveness of the
conservative compact finite difference scheme for KdV.
We would like to make several remarks on this work.

Firstly, although in this report we concentrated mainly
on the compact finite difference operator (S6), the story
can be easily extended to other compact finite difference
operators of the form (2) (and further general forms with

wider stencils).
Secondly, notice that in the scheme (7) (with the dis-

crete variational derivative (5)), ∂3/∂x3 in KdV was

approximated by (δ
⟨1⟩
c )3. This is, however, obviously

not optimal. To understand this, let us first consider
the operator ∂2/∂x2. Usually, when the approximation
is done by the standard finite differences (i.e. not by
the compact finite differences), the operator is approx-
imated by δ⟨2⟩fi = (fi+1 − 2fi + fi−1)/∆x2, instead
of using the product of the first order difference oper-
ator δ⟨1⟩fi = (fi+1−fi−1)/(2∆x). This is absolutely the
preferable choice, because the first one has narrower and
thus better stencil than the latter. Similarly, the oper-
ator ∂3/∂x3 is usually approximated by δ⟨3⟩ = δ⟨1⟩δ⟨2⟩,
instead of (δ⟨1⟩)3. In fact, in Furihata [2], δ⟨1⟩δ⟨2⟩ was
employed in the conservative scheme for KdV. Getting
back to the compact finite difference case, we know there
are also compact finite difference operators for ∂2/∂x2,

noted by δ
⟨2⟩
c here, which are generally preferable than

(δ
⟨1⟩
c )2. Accordingly, ∂3/∂x3 in KdV should be δ

⟨1⟩
c δ

⟨2⟩
c ,

instead of (δ
⟨1⟩
c )3 in the scheme (7). This, however, seri-

ously complicates the situation, where we would need to
reconstruct the system of the compact finite difference
operators so that it fits more to DVDM.
The above points will be discussed in detail in our

forthcoming paper [9] (see also [10]).

Acknowledgments

This work was partly supported by Grant-in-Aid for
Scientific Research (C) and for Young Scientists (B).

References

[1] D. Furihata and T. Matsuo, Discrete Variational Derivative

Method—A Structure-Preserving Numerical Method for Par-
tial Differential Equations, CRC Press, Boca Raton, 2011.

[2] D. Furihata, Finite difference schemes for ∂u/∂t = (∂/∂x)α

(δG/δu) that inherit energy conservation or dissipation prop-

erty, J. Comput. Phys., 156 (1999), 181–205.
[3] J. Li and M. R. Visbal, High-order compact schemes for non-

linear dispersive waves, J. Sci. Comput., 26 (2006), 1–23.
[4] M. Dehghan and A. Taleei, A compact split-step finite dif-

ference method for solving the nonlinear Schrödinger equa-
tions with constant and variable coefficients, Comput. Phys.
Comm., 181 (2010), 43–51.

[5] S. K. Lele, Compact finite difference schemes with spectral-

like resolution, J. Comput. Phys., 103 (1992), 16–42.
[6] T. Colonius and S. K. Lele, Computational aeroacoustics:

progress on nonlinear problems of sound generation, Prog.

Aerosp. Sci., 40 (2004), 345–416.
[7] C. Lui and S. K. Lele, Direct numerical simulation of spatially

developing, compressible, turbulent mixing layers, AIAA Pa-
per, 2001-0291 (2001).

[8] T. Matsuo, M. Sugihara, D. Furihata and M. Mori, Spatially
accurate dissipative or conservative finite difference schemes
derived by the discrete variational method, Japan J. Indust.
Appl. Math., 19 (2002), 311–330.

[9] H. Kanazawa, T.Matsuo and T. Yaguchi, Discrete variational
derivative method based on the compact finite differences (in
Japanese), in preparation.

[10] H. Kanazawa, Application of the compact-difference method

to a structure-preserving numerical method (in Japanese),
bachelor’s thesis, The Univ. of Tokyo, March 2011.

– 8 –


