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Abstract

Choice of suitable shifts strongly influences performance of numerical algorithms with shift for
computing matrix eigenvalues or singular values. On the dqds (differential quotient difference
with shifts) algorithm for singular values, a new shift strategy is proposed in this paper. The
new shift strategy includes shifts obtained from an application of the Kato-Temple inequality
on matrix eigenvalues. The dqds algorithm with the new shift strategy is shown to have a
better performance in iteration number than that of the subroutine DLASQ in LAPACK.
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1. Introduction

Singular value decomposition (SVD) can be adapted
to a wide field of applications. In this paper, we consider
the dqds (differential quotient difference with shifts) al-
gorithm [1] as a singular value computation algorithm.
Before execution of the dqds algorithm, an input ma-
trix is transformed into an upper bidiagonal matrix
B(0) by sequential application of the well-known House-
holder transforms. The dqds algorithm corresponds to
the Cholesky transform with shift

(B(n+1))⊤B(n+1) = B(n)(B(n))⊤ − s(n)I

for n = 0, 1, 2, . . . , where s(n) and I are shift (non-
negative) and the unit matrix, respectively. It is known
that the square of a lower bound of the minimal singular
value of B(n) can be used as a shift [1]. In the DLASQ
subroutine in LAPACK [2], a shift strategy by Parlett
and Marques [3] is implemented. This is called the ag-
gressive shift. The aggressive shift is based on heuris-
tic and estimates the quantity of shift s(n) from a part

of elements of B(n) and values of d
(n)
m−2, d

(n)
m−1, d

(n)
m ,

min1≤i≤m−2 d
(n)
k , min1≤i≤m−1 d

(n)
k and min1≤i≤m d

(n)
k

in Algorithm 1. Note that min1≤k≤m{d(n)k + s(n)}
is an upper bound of the minimal eigenvalue of
(B(n+1))⊤B(n+1) [1]. In this paper, we propose a new
shift strategy for the dqds algorithm. We use the gen-
eralized Newton shift of order 2, the Laguerre shift, the
forward Kato-Temple shift, the backward Kato-Temple
shift and the Gerschgorin shift shown in Section 3. These
shifts share almost part of computation except the Ger-
schgorin shift. Our shift strategy is not heuristic since
it always gives a lower bound of the minimal singular
value by exact computation.
This paper is organized as follows. In Section 2, the

dqds algorithm is briefly reviewed. In Section 3, lower
bounds of the minimal singular value of upper bidiagonal
matrix B(n), which are considered in our new shift strat-
egy, are introduced. Application of the Kato-Temple in-
equality is also described in this section. In Section 4, a
new shift strategy for the dqds algorithm is presented.
In Section 5, a numerical experiment is shown. Perfor-
mance of singular value computation by the dqds algo-
rithm with our new shift strategy is compared to that
by DLASQ.

2. The dqds algorithm

In this section, we describe the dqds algorithm briefly.
Let B(n) (n = 0, 1, 2, . . . ) be an m×m upper bidiagonal
matrix. For i = 1, . . . ,m, let the (i, i) element of B(n)

be given as (q
(n)
i )1/2, where all the q

(n)
i are positive.

Similarly, for i = 1, . . . ,m−1, let the (i, i+1) element of

B(n) be given as (e
(n)
i )1/2, where all the e

(n)
i are positive.

The dqds algorithm is described as in Algorithm 1.

Algorithm 1 The dqds algorithm

1: for n = 0, 1, 2, . . . do:
2: Set the shift s(n)(≥ 0)

3: d
(n+1)
1 ← q

(n)
1 − s(n)

4: for k = 1, . . . ,m− 1 do:

5: q
(n+1)
k ← d

(n+1)
k + e

(n)
k

6: e
(n+1)
k ← e

(n)
k q

(n)
k+1/q

(n+1)
k

7: d
(n+1)
k+1 ← (d

(n+1)
k q

(n)
k+1/q

(n+1)
k )− s(n)

8: end for
9: q

(n+1)
m ← d

(n+1)
m

10: end for
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3. Lower bounds of the smallest singular

value of B(n)

Let the smallest singular value of B(n) and the

smallest eigenvalue of B(n)(B(n))⊤ be denoted by σ
(n)
min

and λ
(n)
min, respectively. Note that λ

(n)
min = (σ

(n)
min)

2. Let
JM (B(n)) (M = 1, 2, . . . ) denote the trace

JM (B(n)) = Tr({[B(n)(B(n))⊤]M}−1).

Let Y (B(n)) be

Y (B(n)) = m · J2(B
(n))

(J1(B(n)))2
− 1. (1)

Since e
(n)
i > 0 (i = 1, . . . ,m−1), all the eigenvalues λ

(n)
i

(i = 1, . . . ,m) of (B(n))⊤B(n) are simple. Since it holds

JM (B(n)) =
∑m

i=1[(λ
(n)
i )−M ], we have

(J1(B
(n)))2Y (B(n)) =

m−1∑
i=1

m∑
j=i+1

(
1

λ
(n)
i

− 1

λ
(n)
j

)2

.

Therefore, Y (B(n)) is positive. In von Matt [4], a lower

bound of σ
(n)
min using J1(B

(n)) and J2(B
(n)) is given as

Θ
(n)
L =

 1

J1(B(n))
· m

1 +
[
(m− 1)Y (B(n))

] 1
2

 1
2

≤ σ
(n)
min.

(2)

Though Θ
(n)
L is called Laguerre’s shift in [4], let us call

(Θ
(n)
L )2 the Laguerre shift in this paper. In [5], a sequence

of lower bounds of σ
(n)
min are given as

Θ
(n)
gN,M = (JM (B(n)))−

1
2M < σ

(n)
min (M = 1, 2, . . . ). (3)

In [6], (Θ
(n)
gN,M )2 is named the generalized Newton shift

of order M .

Next, we give lower bounds of λ
(n)
min utilizing the Kato-

Temple inequality [7, pp.182–183]. We consider the in-
terlacing theorem [8, pp.186–187]. Let A and x be an
m×m real symmetric matrix and an m real vector with
x⊤x = 1, respectively. For x, let ρ be a Rayleigh quo-
tient of A, namely, ρ = x⊤Ax. Among eigenvalues of
A, assume that only one eigenvalue λ is included in an
open interval (λ, λ̄) and others are not included in this
interval. In addition to this assumption, assume that ρ
is included in the interval (λ, λ̄). Then, it holds

ρ− ε2

λ̄− ρ
≤ λ ≤ ρ+

ε2

ρ− λ
,

where ε2 = ∥Ax − ρx∥22. Let us take x as x =
(0, . . . , 0, 1)⊤. Let B̂(n) be the (m − 1) × (m − 1) prin-
cipal submatirix of B(n). Let B̂(n)(B̂(n))⊤ be denoted
by Â. For i = 1, . . . ,m, let the (i, i) elements of
[(B(n))⊤B(n)]−1, [B(n)(B(n))⊤]−1, {[B(n)(B(n))⊤]2}−1,
[(B̂(n))⊤B̂(n)]−1, [B̂(n)(B̂(n))⊤]−1, {[B̂(n)(B̂(n))⊤]2}−1

be denoted by αi, βi, γi, α̂i, β̂i, γ̂i, respectively. Let
us consider the case of A = B(n)(B(n))⊤. Let the small-
est eigenvalue of Â and the second smallest eigenvalue
of A be denoted by λmin(Â) and λm−1(A), respectively.
We see λm−1(A) ≥ λmin(Â). If ζ is a lower bound of

λmin(Â) and it holds ζ > ρ = q
(n)
m , then ζ can be used

as an endpoint of λ̄ of the open interval. In such cases,

we obtain a lower bound of λ
(n)
min

Ξ
(n)
KT,+ = q(n)m

(
1−

e
(n)
m−1

λ̄− q
(n)
m

)
≤ λ

(n)
min. (4)

In [9, 10], such shifts for the mdLVs algorithm [11] for
singular value computation are given. The endpoints λ̄
given in [9, 10] are different from each other. In this pa-
per, we choose a lower bound λ̄ of λmin(Â) as

λ̄ =

(
m−1∑
i=1

γi

)− 1
2

, (5)

which is different from those in [9,10]. We can show that

it holds αi > α̂i and βi = β̂i for i = 1, . . . ,m−1 from the
recurrence relations in [5, Remark 4.6]. Then, from the
recurrence relations in [6, Theorem 2.2.5], it holds that
γi > γ̂i (i = 1, . . . ,m− 1). Since the generalized Newton

shift of order 2 of B̂(n) is given as (
∑m−1

i=1 γ̂i)
−1/2, it

holds

λm−1(A) ≥ λmin(Â) >

(
m−1∑
i=1

γ̂i

)− 1
2

> λ̄.

The lower bound Ξ
(n)
KT,+ in (4) with λ̄ in (5) is named

the forward Kato-Temple shift. Next, let us consider the
case of A = [B(n)(B(n))⊤]−1. Let the largest and the
second largest eigenvalues of A be denoted by λmax(A)
and λ2(A), respectively. Note that x is not an eigenvector
of A. It can readily be shown that ρ = βm < λmax(A).
We have

ε2 = x⊤A2x− ρ2 = γm − (βm)2 > 0.

Let Am−1 be the (m− 1)× (m− 1) principal submatrix
of A. Let us choose λ as

λ = TrAm−1. (6)

It can be readily shown that λ > λ2(A). If ρ = βm > λ
holds, then we can make an interval (λ, λ̄) which satisfies
λ2(A) < λ < ρ ≤ λmax(A) < λ̄. In such cases, we obtain

a lower bound of λ
(n)
min

Ξ
(n)
KT,− =

(
βm +

γm − (βm)2

βm − λ

)−1

≤ λ
(n)
min. (7)

Let us call Ξ
(n)
KT,− the backward Kato-Temple shift. This

shift is newly introduced in this paper.

Lastly, we consider a lower bound of λ
(n)
min obtained

from application of the Gerschgorin theorem [12] to the

matrix B(n). For i = 1, . . . ,m, let K
(n)
i be

K
(n)
i = (q

(n)
i + e

(n)
i )−

[(
q
(n)
i e

(n)
i−1

) 1
2

+
(
q
(n)
i+1e

(n)
i

) 1
2

]
,

where q
(n)
m+1 = 0 and e

(n)
0 = e

(n)
m = 0, respectively. Then,

a lower bound of λ
(n)
min is given as

Ξ
(n)
G = min

1≤i≤m
{K(n)

i } ≤ λ
(n)
min. (8)

See [10] for detail. Let us call Ξ
(n)
G the Gerschgorin shift.
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4. A new shift strategy

In this section, we present a shift strategy for the dqds
algorithm. In this strategy, we prepare a “flag”. Accord-
ing to value of this flag, we compute a shift in different
ways. At the start of singular value computation, the
value of this flag is set to “0”. Note that the subroutine
DLASQ in LAPACK has a function to detect failure of
the Cholesky transform with shift. This failure occurs in
the following cases:

• The computed shift is no less than the minimal

eigenvalue λ
(n)
min of B(n)(B(n))⊤.

• The computed shift is smaller than λ
(n)
min but very

close to it.

When the flag is “0” and this failure occures, the flag
is changed to “1” before beginning of the next itera-
tion. The flag “1” is reset to “0” when only deflation
occurs. Regardless the value of the flag, when failure
of the Cholesky transform with shift occurs, our imple-
mentation uses the original retry strategy implemented
in LAPACK.
In the case where the value of the flag is “0”, we de-

termine shift as max{Θ1,Θ2,Θ3}, where Θi (i = 1, 2, 3)
are given as follows.

• Setting of Θ1: The quantity Y (B(n)), which is the-
oretically positive, in (1) is computed. When nu-
merically computed Y (B(n)) is positive, we com-

pute (Θ
(n)
L )2 according to (2) and set Θ1 =

(Θ
(n)
L )2. When numerically computed Y (B(n)) is

non-positive, we compute (Θ
(n)
gN,M )2 for M = 2 ac-

cording to (3) and set Θ1 = (Θ
(n)
gN,2)

2.

• Setting of Θ2: We compute λ̄ in (5). If λ̄ > q
(n)
m

holds, then we compute Ξ
(n)
KT,+ in (4) and set Θ2 =

Ξ
(n)
KT,+. Else, we set Θ2 = 0.

• Setting of Θ3: If λ ≥ βm, then we set Θ3 = 0. If the
quantity γm− (βm)2, which is theoretically positive
from (1), is numerically non-positive, then we set
Θ3 = 0. If λ < βm holds and numerically computed

γm − (βm)2 is positive, then we compute Ξ
(n)
KT,− in

(7) and set Θ3 = Ξ
(n)
KT,−.

In the case where the value of the flag is “1”, we com-

pute the lower bound Ξ
(n)
G in (8). If Ξ

(n)
G is positive, then

we use it as a shift. Else, we do not execute shift of origin,
namely, shift is zero.
An efficient method to compute quantities λ̄ in (5),

J1(B
(n)) and J2(B

(n)) is required. The diagonals of
[B(n)(B(n))T ]−1 and {[B(n)(B(n))T ]2}−1 can be ob-
tained through simple recurrence relations. These recur-
rence relations are found in [5, 6].

5. Numerical experiment

In this section, performance of the dqds algorithm
with the new shift strategy introduced in the previous
section is compared with that of DLASQ in LAPACK
3.4.0. We use a computer with the Intel(R) CoreTM i5-
2500@3.30GHz CPU, 8 GB of memory, Linux operating

system and gfortran version 4.4.5 compiler. We compile
our source code with option -O2.
As input upper bidiagonal matrices, we prepare ran-

dom matrices and precision test matrices. The random
matrices are upper bidiagonal matrices where all the di-
agonals and the upper subdiagonals are given from uni-
form pseudo-random numbers in interval [0, 1]. The pre-
cision test matrices are upper bidiagonal matrices where
all the diagonals and the upper subdiagonals are 1. The
m×m precision test matrix has the same singular values
with the m ×m upper bidiagonal matrix B̃m where all
the diagonals and the upper subdiagonals are 1 and −1,
respectively. It is well-known that the matrix B̃m has
singular values expressed by a trigonometric function as

σi = 2 sin

(
2i− 1

2(2m+ 1)
π

)
(i = 1, . . . ,m).

Since singular values of the precision test matrices are
exactly given, we can evaluate relative errors of com-
puted singular values of these matrices.
Our shift strategy is implemented into the dqds al-

gorithm by replacing the aggressive shift in DLASQ.
The deflation, splitting and stopping criteria are same
in both implementations. Moreover, the scaling strategy
in DLASQ is also changed in our implementation. In this
change, scaling size is changed to be smaller. Possibility
of underflow becomes smaller according to increase of
scaling size [3]. Therefore, our change of scaling strategy
is fair.
Results of experiment are shown in Tables from 1 to

7. On the random matrices, we prepare 10 matrices for
each size. Numerical computation is executed once for
each matrix. Data of performance are averages among
the 10 matrices. On the precision test matrices, numeri-
cal computation is executed once for each size of matrix.
Errors of singular values shown in Table 5 are averages
of absolute values of relative errors on all the singular
values. Note that we executed numerical computations
for Tables from 1 to 5 and for Tables 6 and 7 indepen-
dently. Each column for percentage in Tables 6 and 7
represents zero shift, the Laguerre shift, the generalized
Newton shift of order 2, the forward Kato-Temple shift,
the backward Kato-Temple shift and the Gerschgorin
shift, respectively.
We see that

• In all the cases, iteration numbers in our strategy
are less than those in DLASQ.

• On the random matrices, except for the case where
the matrix size is 10000, the averages of execu-
tion time in our strategy are shorter than those in
DLASQ.

• On the precision test matrices, execution time in
our strategy is longer than that in DLASQ in all the
cases. While, the relative errors of the computed sin-
gular values in our strategy are smaller than those
in DLASQ in all the cases.

On tables from 1 to 4, reversal between the numbers
of iterations and the execution time is caused from fre-
quency of splitting.
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Table 1. Iteration numbers on random matrices.

Matrix size DLASQ Our strategy

10, 000 93125.9 71607.1
30, 000 283183.2 219723.0
50, 000 473910.8 370932.4

100, 000 951654.1 746296.4
300, 000 2868929.4 2256803.1
500, 000 4783286.3 3766986.9

1, 000, 000 9585259.1 7547005.2

Table 2. Execution time on random matrices (in sec.).

Matrix size DLASQ Our strategy

10, 000 1.66 1.73

30, 000 12.19 11.86
50, 000 31.27 30.42

100, 000 114.73 107.95
300, 000 875.34 800.45

500, 000 2203.63 2016.12
1, 000, 000 8014.09 7185.34

Table 3. Iteration numbers on precision test matrices.

Matrix size DLASQ Our strategy

10, 000 40020 32833

30, 000 119214 93267
50, 000 194322 152796

100, 000 375526 302480
300, 000 1068813 902148

500, 000 1741156 1502034
1, 000, 000 3381461 3001909

Table 4. Execution time on precision test matrices (in sec.).

Matrix size DLASQ Our strategy

10, 000 2.06 3.00
30, 000 18.10 25.73
50, 000 48.45 70.80

100, 000 185.94 282.14
300, 000 1640.02 2692.59
500, 000 4519.11 7627.34

1, 000, 000 17717.18 30834.91

Table 5. Errors of singular values on precision test matrices.

Matrix size DLASQ Our strategy

10, 000 1.63× 10−14 1.36× 10−15

30, 000 1.05× 10−14 2.24× 10−15

50, 000 1.05× 10−14 2.82× 10−15

100, 000 9.21× 10−15 2.45× 10−15

300, 000 9.47× 10−15 3.97× 10−15

500, 000 1.17× 10−14 4.22× 10−15

1, 000, 000 1.01× 10−14 4.73× 10−15

6. Conclusions

A new shift strategy for the dqds algorithm is pre-
sented. This strategy utilizes shifts obtained by apply-
ing the Kato-Temple inequality on matrix eigenvalues.
In numerical experiment, iteration numbers in the dqds
algorithm with our shift strategy are less than those with
the aggressive shift in all the cases. We have some more
numerical examples on other types of test matrices which
show the same tendency. Therefore, it can be expected
that the computed singular values with the new shift
strategy have higher precision than those with the ag-
gressive shift.

Table 6. Percentage of numbers of iteration with each shift to
the total iteration numbers on random matrices.

Matrix size zero Lag. g. N. KT+ KT− Ger.

10, 000 48.92 43.48 1.92 1.26 1.98 2.44
30, 000 50.69 41.55 1.89 1.26 1.99 2.62

50, 000 51.52 40.74 1.87 1.23 1.97 2.68
100, 000 52.08 40.12 1.87 1.23 1.96 2.74
300, 000 52.70 39.48 1.86 1.23 1.96 2.77
500, 000 52.84 39.32 1.86 1.22 1.96 2.79

1, 000, 000 52.97 39.18 1.87 1.23 1.96 2.80

Table 7. Percentage of numbers of iteration with each shift to

the total iteration numbers on precision test matrices.

Matrix size zero Lag. g. N. KT+ KT− Ger.

10, 000 2.56 32.65 3.83 30.44 30.51 0

30, 000 1.06 33.04 1.55 32.16 32.20 0
50, 000 0.50 33.20 0.82 32.72 32.76 0

100, 000 0.23 33.24 0.38 33.06 33.09 0
300, 000 0.07 33.31 0.11 33.25 33.26 0

500, 000 0.04 33.32 0.06 33.29 33.29 0
1, 000, 000 0.02 33.32 0.03 33.31 33.31 0
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