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Abstract

We obtained the best constants of Sobolev inequalities corresponding to complete low-cut
filter. In the background, we have an n-dimensional boundary value problem and a one-
dimensional periodic boundary value problem. The best constants of the corresponding
Sobolev inequalities are equal to diagonal values of Green’s functions for these boundary
value problems.
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1. The Sobolev inequality for a boundary

value problem in n-dimensional Eu-

clidean space

We consider the problem on the basis of a complete
low-cut filter, which is a device that passes only high
frequency.
We assume M = 1, 2, . . . , n = 1, 2, . . . , 2M − 1, 0 <

A < ∞, x = (x1, x2, . . . , xn) ∈ Rn, ξ = (ξ1, ξ2, . . . , ξn) ∈
Rn. We set the unitary inner product

⟨ξ, x⟩ =
n∑

j=1

ξjxj , |ξ|2 = ⟨ξ, ξ⟩.

We define Fourier transform as

u(x) −̂→ û(ξ) =

∫
Rn

e−
√
−1 ⟨ξ,x⟩u(x) dx,

where dx = dx1dx2 · · · dxn. We introduce Sobolev space
with low-cut frequency

H =
{
u ∈ WM,2 | û(ξ) = 0 (|ξ| < A)

}
,

Sobolev inner product

(u, v)H =

(
1

2π

)n ∫
|ξ|≥A

|ξ|2M û(ξ)v̂(ξ) dξ,

and Sobolev energy

∥u∥2H =

(
1

2π

)n ∫
|ξ|≥A

|ξ|2M |û(ξ)|2 dξ.

(·, ·)H is proved to be an inner product of H in Proof of
Theorem 1.H is Hilbert space with inner product (·, ·)H .
Our conclusion is as follows.

Theorem 1 For any u ∈ H, there exists a positive con-
stant C which is independent of u, such that a Sobolev
inequality (

sup
y∈Rn

|u(y)|
)2

≤ C ∥u∥2H (1)

holds. Among such C, the best constant is

C0 = G(0) =
2

(4π)
n
2 Γ(n2 )(2M − n)A2M−n

. (2)

If one relpaces C by C0 in the above inequality (1), the
equality holds for u(x) = cG(x−y0) with arbitrary c ∈ C
and y0 ∈ Rn. Green’s function G(x, y) = G(x − y) is
explained later in Lemma 1.

In the background of this theorem, we have the fol-
lowing n-dimensional boundary value problem. Concern-
ing the uniqueness and existence of the solution to the
boundary value problem, we have the following lemma.

Lemma 1 For an arbitrary bounded continuous func-
tion f(x) satisfying the solvability condition f̂(ξ) =
0 (|ξ| < A), the boundary value problem

BVP{
(−∆)Mu = f(x) (x ∈ Rn),

û(ξ) = 0 (|ξ| < A)

has a unique solution

u(x) =

∫
Rn

G(x, y)f(y)dy (x ∈ Rn). (3)

G(x, y)=G(x− y) (x, y ∈ Rn) is Green’s function given
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Fig. 1. G(x) (M = 1).
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Fig. 2. G(x) (M = 2).
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Fig. 3. G(x) (M = 3).

by

G(x) =

(
1

2π

)n
2
∫ ∞

A

r−(2M−n)−1 (|x|r)−
n−2
2

× Jn−2
2

(|x|r) dr, (4)

where Jν(z) (z ≥ 0) is the Bessel function. From the
expansion of Jν(z) [1, p.145], we have

G(x) =
2

(4π)
n
2

∞∑
j=0

[
(−1)j

j!Γ(n2 +j)(2M−n−2j)A2M−n−2j

×
(
|x|
2

)2j
]
. (5)

Figs. 1–3 illustrate graphs of G(x) in M = 1, 2, 3,
n = 1 and A = 1.

G(x) =
1

π

∫ ∞

1

r−2M cos(|x|r) dr.

Proof of Lemma 1 Through Fourier transform, BVP
is transformed into |ξ|2M û(ξ) = f̂(ξ) (ξ ∈ Rn). From

f̂(ξ) = 0 and û(ξ) = 0 (|ξ| < A), we have

û(ξ) = Ĝ(ξ)f̂(ξ) (ξ ∈ Rn),

Ĝ(ξ) =

{
|ξ|−2M (|ξ| ≥ A),
0 (|ξ| < A).

Through inverse Fourier transform, we have (3) and

G(x) =

(
1

2π

)n ∫
Rn

e
√
−1⟨x,ξ⟩Ĝ(ξ) dξ (x ∈ Rn). (6)

Let T = (tij) be an orthogonal matrix. We introduce a
new variable y ∈ Rn by the relation ξ = Ty, or equiva-
lently

ξi =
n∑

j=1

tijyj (1 ≤ i ≤ n).

It is easy to see that the corresponding Jacobian J is

J = det

(
∂ξ

∂y

)
= detT = ±1

and therefore |J | = 1. Here, we consider a special case
tTx = |x|t(1, 0, . . . , 0). From (6), we have

(2π)nG(x) =

∫
|ξ|≥A

e
√
−1 ⟨x,ξ⟩|ξ|−2M dξ

=

∫
|Ty|≥A

e
√
−1 ⟨x,Ty⟩|Ty|−2M |J | dy

=

∫
|y|≥A

e
√
−1 ⟨tTx,y⟩|y|−2M dy

=

∫
|y|≥A

e
√
−1 |x|y1 |y|−2M dy.

For |y| = r, y is expressed as the following polar coordi-
nates.

y1 = r cos(θ1),

y2 = r sin(θ1) cos(θ2),

y3 = r sin(θ1) sin(θ2) cos(θ3),

...

yn−2 = r sin(θ1) sin(θ2) · · · sin(θn−3) cos(θn−2),

yn−1 = r sin(θ1) sin(θ2) · · · sin(θn−2) cos(φ),

yn = r sin(θ1) sin(θ2) · · · sin(θn−2) sin(φ),

where A < r < ∞, 0 < θ1, θ2, . . . , θn−2 < π, 0 < φ < 2π.
Its Jacobian is

∂(y1, . . . , yn)

∂(r, θ1, . . . , θn−2, φ)
=

rn−1(sin(θ1))
n−2(sin(θ2))

n−3 · · · sin(θn−2).

Here, ωn is surface area of n dimensional unit sphere as

ωn =
2π

n
2

Γ
(
n
2

) .
Green’s function (6) is rewritten as follows:

(2π)nG(x)

=

∫ ∞

A

∫ π

0

· · ·
∫ π

0

∫ 2π

0

e
√
−1 |x|r cos(θ1)r−(2M−n)−1(sin(θ1))

n−2

× (sin(θ2))
n−3 · · · sin(θn−2) dφdθn−2 · · · dθ1dr

= ωn−1

∫ ∞

A

∫ π

0

cos (|x|r cos(θ1))
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× (sin(θ1))
n−2 dθ1r

−(2M−n)−1 dr,

where we use∫ π

0

sin(|x|r cos(θ1)) (sin(θ1))n−2dθ1 = 0.

Using Lommel’s formula [1, p.179], we have

(2π)nG(x) = 2
n−2
2 π

1
2Γ

(
n− 1

2

)
ωn−1

×
∫ ∞

A

r−(2M−n)−1(|x|r)−
n−2
2 Jn−2

2
(|x|r) dr.

From

ωn−1 =
Γ
(
n
2

)
π

1
2Γ

(
n−1
2

)ωn =
2π

n−1
2

Γ
(
n−1
2

) ,
so we have (4). Moreover, using expansion of Bessel func-
tion [1, p145], we have

G(x) =
2

2nπ
n
2

×
∫ ∞

A

∞∑
j=0

(−1)j

j!Γ
(
n
2 + j

)( |x|r
2

)2j

r−(2M−n)−1dr.

From the assumption 2M > n, we have (5). Taking the
limit as x → 0 of (5), we have (2). Thus we proved
Lemma 1.

(QED)

We next show that Green’s function G(x, y) is simul-
taeously a reproducing kernel for a set of Hilbert space
H and its inner product (·, ·)H .

Lemma 2 For any u ∈ H and fixed y ∈ Rn, we have
the following reproducing relations:

u(y) = (u(x), G(x, y))H , (7)

G(0) = ∥G(x, y)∥2H . (8)

Proof of Lemma 2 Since Fourier transform of
G(x, y) = G(x− y) with respect to x is e−

√
−1 ⟨ξ,y⟩Ĝ(ξ),

the relation (7) is rewritten as

(u(x), G(x, y))H

=

(
1

2π

)n ∫
|ξ|≥A

|ξ|2M û(ξ)e−
√
−1 ⟨ξ,y⟩Ĝ(ξ) dξ

=

(
1

2π

)n ∫
|ξ|≥A

e
√
−1 ⟨y,ξ⟩û(ξ) dξ = u(y).

(8) is shown by putting u(x) = G(x, y) in (7). This com-
pletes the proof of Lemma 2.

(QED)

Finally, we prove Theorem 1.
Proof of Theorem 1 Applying Schwarz inequality to
(7) and using (8), we have

|u(y)|2 ≤ ∥G(x, y)∥2H ∥u∥2H = G(0) ∥u∥2H .

Taking the supremum with respect to y ∈ Rn, we have(
sup
y∈Rn

|u(y)|
)2

≤ G(0) ∥ux∥2H . (9)

This inequality shows that the inner product ∥u∥2H =
(u, u)H is positive definite. For any fixed y0 ∈ Rn, if we

take u(x) = G(x−y0) ∈ H in the above inequality, then
we have(

sup
y∈Rn

|G(y − y0)|
)2

≤ G(0) ∥G(x− y0)∥2H = G(0)2.

Together with a trivial inequality

G(0)2 ≤
(

sup
y∈Rn

|G(y − y0)|
)2

,

we have(
sup
y∈Rn

|G(y − y0)|
)2

= G(0) ∥G(x− y0)∥2H .

This shows that G(0) is the best constant of (9) and the
equality holds for G(x − y0). This completes the proof
of Theorem 1.

(QED)

For (6), we have

|G(x)| ≤
(

1

2π

)n ∫
Rn

∣∣∣Ĝ(ξ)
∣∣∣ dξ = G(0) (x ∈ Rn).

So we see that the maximum of G(x) is G(0).

2. The Sobolev inequality under a peri-

odic boundary condition

We here consider a one-dimensional case. For M,N =
1, 2, . . . and x ∈ R, we introduce the function

φ(j, x) = e
√
−1 ajx,

aj = 2πj (j = 0,±1,±2, . . . ).

We define Fourier transform as

u(x) −̂→ û(j) =

∫ 1

0

u(x)φ(j, x) dx.

We introduce Sobolev space with periodic boundary con-
dition and low-cut frequency

H =
{
u
∣∣∣u(M) ∈ L2(0, 1),

u(i)(1)− u(i)(0) = 0 (0 ≤ i ≤ M − 1),

û(j) = 0 (|j| < N)
}
,

Sobolev inner product

(u, v)H =
∑

|j|≥N

a2Mj û(j)v̂(j),

and Sobolev energy

∥u∥2H =
∑

|j|≥N

a2Mj | û(j)|2 .

(·, ·)H is proved to be an inner product of H in Proof of
Theorem 2.H is Hilbert space with inner product (·, ·)H .
Our conclusion is as follows.

Theorem 2 For any u ∈ H, there exists a positive con-
stant C which is independent of u, such that a Sobolev
inequality (

sup
0≤y≤1

|u(y)|
)2

≤ C∥u∥2H (10)
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holds. Among such C, the best constant is

C0 = G(0)

=


2

(2π)2M
ζ(2M) (N = 1),

2

(2π)2M

ζ(2M)−
N−1∑
j=1

1

j2M

 (N = 2, 3, . . . ),

where ζ(z) =
∑∞

n=1 n
−z (Rez > 1) is the well-known

Riemann-zeta function. If one relpaces C by C0 in the
above inequality (10), the equality holds for u(x) =
cG(x − y0) with arbitrary c ∈ C and y0 ∈ R. Green’s
function G(x) is explained in Lemma 3.

It should be noted that if we put N = 1 in the above
theorem, we have Theorem 2 in our previous work [2].
In the background of this theorem, we have the follow-

ing one-dimensional periodic boundary value problem.
Concerning the uniqueness and existence of the solution
to the boundary value problem, we have the following
lemma.

Lemma 3 For an arbitrary bounded continuous func-
tion f(x) satisfying the solvability condition f̂(j) = 0
(|j| < N), the boundary value problem

BVP (−1)Mu(2M) = f(x) (0 < x < 1),
u(i)(1)− u(i)(0) = 0 (0 ≤ i ≤ 2M − 1),
û(j) = 0 (|j| < N)

has a unique solution

u(x) =

∫ 1

0

G(x, y)f(y) dy (0 < x < 1). (11)

G(x, y) = G(x − y) (0 < x, y < 1) is Green’s function
given by

G(x) = 2

∞∑
j=N

a−2M
j cos(ajx). (12)

Proof of Lemma 3 Through Fourier transform as∑
j∈Z

f̂(j)φ(j, x) = f(x) = (−1)Mu(2M)

= (−1)M
∑
j∈Z

û(j)φ(2M)(j, x) =
∑
j∈Z

a2Mj û(j)φ(j, x),

BVP is transformed into

a2Mj û(j) = f̂(j) (j ∈ Z).

From f̂(j) = 0 and û(j) = 0 (|j| < N), we have

û(j) = Ĝ(j)f̂(j) (j ∈ Z),

Ĝ(j) =

{
a−2M
j (|j| ≥ N),

0 (|j| < N).

Through inverse Fourier transform, we have (11) and
(12) as

G(x) =
∞∑

j=−∞
Ĝ(j)φ(j, x) =

∑
|j|≥N

a−2M
j φ(j, x)

= 2

∞∑
j=N

a−2M
j cos(ajx).

We see that the maximum of G(x) is G(0). This com-
pletes the proof.

(QED)

We next show that Green’s function G(x, y) is simul-
taeously a reproducing kernel for a set of Hilbert space
H and its inner product (·, ·)H .

Lemma 4 For any u ∈ H and fixed y (0 ≤ y ≤ 1), we
have the following reproducing relations.

u(y) = (u(x), G(x, y))H , (13)

G(0) = ∥G(x, y)∥2H . (14)

Proof of Lemma 4 Fourier transform of G(x, y) =

G(x−y) wiht respect to x is φ(j, y)Ĝ(j). Hence, for any
u ∈ H, we have (13) as

(u(x), G(x, y))H =
∑

|j|≥N

a2Mj û(j)φ(j, y)Ĝ(j)

=
∑

|j|≥N

a2Mj Ĝ(j)û(j)φ(j, y) =
∑

|j|≥N

û(j)φ(j, y) = u(y).

(14) is shown by putting u(x) = G(x, y) in (13). This
completes the proof of Lemma 4.

(QED)

Finally, we prove Theorem 2.
Proof of Theorem 2 Applying Schwarz inequality to
(13) and using (14), we have

|u(y)|2 ≤ ∥G(x, y)∥2H ∥u∥2H = G(0) ∥u∥2H .

Taking the supremum with respect to y (0 ≤ y ≤ 1), we
have (

sup
0≤y≤1

|u(y)|
)2

≤ G(0) ∥u∥2H . (15)

This inequality shows that the inner product ∥u∥2H =
(u, u)H is positive definite. For any fixed y0 (0 ≤ y0 ≤
1), if we take u(x) = G(x − y0) ∈ H in the above in-
equality, then we have(

sup
0≤y≤1

|G(y − y0)|
)2

≤ G(0) ∥G(x− y0)∥2H = G(0)2.

Combining this and a trivial inequality

G(0)2 ≤
(

sup
0≤y≤1

|G(y − y0)|
)2

,

we have(
sup

0≤y≤1
|G(y − y0)|

)2

= G(0) ∥G(x− y0)∥2H .

This shows that G(0) is the best constant of (15) and the
equality holds for G(x − y0). This completes the proof
of Theorem 2.

(QED)
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