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Abstract

In this report we propose a simple new geometric integration approach for solving ordinary dif-
ferential equations based on the concept of “local” invariants. The approach basically belongs
to the class of invariants-preserving integrations, but it differs from any existing methods
in that it can automatically detect enough number of invariants, and work even for non-
conservative systems. Numerical examples show that the approach can in fact work.
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1. Introduction

In this paper, we show a simple new geometric integra-
tion approach for solving ordinary differential equations
of the form:

dz

dt
= f(z) (1)

where z(t) ∈ RN and f : RN → RN .
ODE (1) often happens to have invariants such as en-

ergy and momentum, and for both of numerical stability
and qualitatively better behaviors, it is generally encour-
aged to employ some special integrators that preserve
the invariants. The most typical integrator of this class
is the discrete gradient method (see, for example, [1,2]).
The method (or any similar ideas) can be, however, only
applied to the systems where invariants are explicitly
known, and otherwise it is even impossible to write down
the scheme itself. Although this is not a crucial restric-
tion from a practical point of view, one may still ask
a mathematically challenging question: is it possible to
preserve even unknown invariants?
It is interesting to rephrase the question in the fol-

lowing slightly different and stronger way: intuitively, if
we know one invariant we can essentially decrease the
degree of freedom of the ODE by one. Similarly, if we
know the N − 1 (independent) invariants of ODE (1),
we should be able to exactly trace the trajectory of the
solution. This is extensively discussed in the field of inte-
grable systems, but we would like to remind the readers
that even for non-integrable systems it is still possible
to consider enough number of, i.e., N − 1 invariants in
some weak sense that determine the trajectory. The in-
variants are called “local invariants” (see, for example,
[3]). It seems that this concept has not come into play in
the area of structure-preserving methods so far, to the
best of the authors’ knowledge, and that motivated our
project below.

Our main idea in this report is to more actively utilize
the local invariants to solve ODEs. Since they are not ex-
plicitly known in general, we commence by numerically
detecting them. Then we will construct a numerical inte-
grator that preserves the detected invariants by the dis-
crete gradient method. The numerical examples below
demonstrates that the idea can in fact work. Note that
this report is to raise the mathematically simple idea,
and not to discuss the actual efficiency of computation.
This paper is organized as follows. In Section 2 the

concept of local invariants is introduced and its conve-
nient features are briefly reviewed. In Section 3 the prin-
ciple of the proposed method is explained. In Section 4
numerical examples are presented. Concluding remarks
are given in Section 5.

2. Local Invariants

In this section the concept of local invariants is briefly
reviewed. The description is based on Chapter 2 of [3].
First we review the conventional invariants—what we
should call “global invariants”—of ODE.

Definition 1 (Global invariants) A function F :
RN → R is called a global invariant of ODE (1) if for
all z ∈ RN and all t ∈ R,

F (ϕt(z)) = F (z), (2)

where ϕt is the flow of ODE (1).

A typical example of the global invariants is the total
energy when the ODE is a Hamiltonian equation. The
concept of local invariants is a weaker version of the
above definition.

Definition 2 (Local invariants) Let U be a domain
in RN . A function F : U → R is called a local invariant
of ODE (1) if for all z ∈ U and all t ∈ R such that
ϕt(z) ∈ U ,

F (ϕt(z)) = F (z). (3)
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In order to explain the existence result of the local
invariants, let us recall the definition of the independence
of the local invariants.

Definition 3 (Independence of local invariants)
Let F1, . . . , Fk be smooth real-valued functions defined
on a domain U in RN . F1, . . . , Fk are called functionally
dependent if for each z ∈ U there is a neighborhood V
of z and a smooth real-valued function G : Rk → R not
identically zero on any open subset of Rk, such that

G(F1(x), . . . , Fk(x)) = 0 (4)

for all x ∈ V . F1, . . . , Fk are called functionally inde-
pendent if they are not functionally dependent when re-
stricted to any open subset V ⊂ U .

The flow ϕt of ODE (1) can be seen as a one–
dimensional Lie group acting on RN . Then, from the
general theory of Lie groups, we have the following the-
orem.

Theorem 1 (Maximal number of independent lo-
cal invariants) If ODE (1) has a unique solution, then
for all z ∈ RN , there exist precisely N − 1 functionally
independent local invariants F1, . . . , FN−1 of ODE (1)
defined in a neighborhood of z. Moreover, any other lo-
cal invariant of the ODE (1) defined near z is of the form
G(F1(z), . . . , FN−1(z)) for some smooth function G.

For example, when N = 3, there are two independent
local invariants around any point in R3. The intersection
of the two surfaces spanned by the local invariants cor-
responds to a piece of the exact trajectory (see Fig. 1).
We note that a function I is a (local) invariant of

ODE (1) if and only if it satisfies

dI

dt
= ∇I · zt = ∇I · f = 0. (5)

For a given vector field f , this can be regarded as a
linear PDE regarding the unknown function I(z). In this
respect, the above statement can be rephrased that if the
PDE (5) has a solution (we do not get into the discussion
of regularity, but simply assume it is smooth enough so
that the following argument makes sense), then it should
be an invariant. Moreover, if the solution is defined on
entire RN , it is a global invariant. But of course this
cannot happen in general (consider dissipative systems),
and instead Theorem 1 guarantees the existence of N −
1 functionally independent local solutions around any
point in RN .
As an illustration, let us consider the damped har-

monic oscillator:

d

dt

(
z1
z2

)
=

(
0 1
−1 −0.1

)(
z1
z2

)
. (6)

The blue curve in Fig. 2 shows the exact solution. This
is a two-dimensional dissipative equation, and thus ob-
viously does not have any global (non-trivial) invariant.
However, from Theorem 1, ODE (6) still should have a
local invariant; this can be understood in the following
way. For this ODE, PDE (5) becomes

z2
∂I

∂z1
− (z1 + 0.1z2)

∂I

∂z2
= 0. (7)

Fig. 1. Local invariants and the trajectory in R3.
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Fig. 2. Construction of a local invariant: the damped oscillator
case.

From the general theory of advection equations, the so-
lution of PDE (7) is uniquely determined on a neighbor-
hood of a given point by giving initial values on initial
surfaces which is not parallel to the trajectory every-
where [4] (note that the trajectory of ODE (6) corre-
sponds to the characteristics of PDE (7)). For example,
let us consider the small red rectangle in Fig. 2. Once the
value of I on some initial surface, say the green diagonal
line, is given, then the value of I in the whole rectangle
can be uniquely determined. This implies the existence
of a local invariant. If this procedure fails, then we can
just take a smaller rectangle to retry the procedure. Our
idea in this report is to do the procedure numerically to
find enough number of local invariants by varying initial
data.

3. Proposed Method

In this section we explain the principle of our new
method. The method consists of the following steps:

• Step 1: Set a local computational domain to find
local invariants,

• Step 2: Time-step while preserving all the local in-
variants,

• Step 3: In Step 2, when the time evolution ap-
proaches the boundary, reject the local computa-
tional domain and go back to Step 1.

We explain these steps in detail below.

3.1 Setting a local computational domain and finding
local invariants

Before time-stepping we compute the N − 1 local in-
variants around the current point, say zn (n is the time
step number; zn ≃ z(n∆t)). We solve PDE (5) numeri-
cally to compute the local invariants. PDE (5) is of the
form of advection equations, for which various efficient fi-
nite difference methods such as upwind scheme and CIP
method are already known. If in the procedure below the
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Fig. 3. Example of the computational domain and the initial sur-

face.

Fig. 4. Coordinate system and two initial data (N = 3).

Fig. 5. Notation for the computational domain (N = 2).

value of I on points other than the mesh points becomes
necessary, it is simply computed by linear interpolation.
In order to carry out the procedure, we first have to

decide the computational domain and the initial condi-
tion for (5). As noted before, if the vector field f becomes
parallel to the initial surface (the surface on which the
initial value is given) in the computational domain, the
computation should fail. So here we set the computa-
tional domain to a rectangular region which has zn as
the center point, and by carefully observing the direc-
tion of f(zn), we set an initial surface so that it includes
zn and is perpendicular to the vector field f(zn). An
example in the case of N = 3 is shown in Fig. 3; zn is
denoted by the red point, the initial surface by the green
rectangle, and f(zn) by the blue arrow. The black box
shows the local computational domain.
Next we give N − 1 initial values for PDE (5) on the

initial surface. This should be done so that the resulting
N − 1 local invariants to be functionally independent.
A simple choice is to adopt N − 1 linear function on
the surface: a 3-dimensional example is shown in Fig. 4.
Consider a local coordinate system (y1, y2, y3) of the lo-
cal rectangular domain, and suppose the initial surface
is perpendicular to y3. Then we can simply choose initial
data I = y1 (the left panel; the red lines show the level
sets) and I = y2 (right).
Then we solve the PDE (5). Obviously the choice of

the computational domain and the mesh–size should be
appropriately determined. We discuss this point in the
subsequent section. For the discussion, we use the nota-
tion shown in Fig. 5: li’s are the length of the domain,
and di’s are the grid sizes.

3.2 Time-stepping with all the local invariants pre-
served

After the N − 1 local invariants are obtained numeri-
cally, we solve ODE (1) by the discrete gradient method
which is briefly reviewed below. Discrete gradient ∇dI
is a function RN × RN → RN which satisfies

I(y)− I(x) = ∇dI(x, y) · (y − x). (8)

Discrete gradient is not unique, and several formulas are
proposed [1,5]. With a discrete gradient fixed, a scheme
can be written as

zn+1 − zn
∆t

= S(zn)∇dI(zn, zn+1) (9)

where S(z) is a skew–symmetric matrix which satisfies
dz
dt

= S(z)∇I(z). This scheme preserves I. The exis-

tence of S(z) is mathematically proved [6]. While the
scheme (9) can preserve only one invariant I, it can be
further extended to preserve several invariants [7]:

zn+1 − zn
∆t

= S(zn)∇dI1(zn, zn+1) · · ·∇dIk(zn, zn+1) (10)

where S(z) is a completely anti-symmetric tensor satis-

fying dz
dt

= S(z)∇I1(z)∇I2(z) · · ·∇Ik(z). This scheme
preserves I1, · · · , Ik simultaneously. Below we employ
this to preserve the N − 1 local invariants.

3.3 Rejecting the local computational domain
The time-stepping above can be done only within

the local computational domain, and if the solution ap-
proaches to one of the boundaries, we have to reject the
domain and restart the whole procedure. This can be
simply detected by the rule that when the value of the lo-
cal invariants out of the computational domain becomes
necessary, that is the timing of the rejection.

4. Numerical Examples
In this section we present some numerical examples

that illustrate that the proposed method can in fact
work. We used the upwind scheme for solving (5), and
the 2nd order discrete gradient scheme (10) with Gon-
zalez’s discrete gradient [1] for solving (1).

4.1 Damped oscillation
Fig. 7 shows the numerical solution of ODE (6) by

the proposed method. Initial point is (1.0, 0.0) and pa-
rameters are set to ∆t = 0.05, l1 = 0.1, l2 = 0.3, d1 =
10−2, d2 = 10−4. The error of the numerical solution at
t = 50 was 0.0023 in 2-norm, which is fair for the dis-
cretization widths. Note that this example clearly shows
our point that even non-conservative systems can be
solved by conservative integrators.

4.2 Kepler problem
Next let us consider the two-dimensional Kepler prob-

lem:

d

dt


z1
z2
z3
z4

 =


z3
z4

− z1

(z2
1+z2

2)
3
2

− z2

(z2
1+z2

2)
3
2

 (11)

– 39 –



JSIAM Letters Vol. 5 (2013) pp.37–40 Takeru Matsuda et al.

 -1  -0.5 0 0.5 1
 -1

  -0.5

0

 0.5

z
1

z
2

Fig. 6. Exact solution.
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Fig. 7. Proposed method.
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Fig. 8. Exact solution.
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Fig. 9. Proposed method.
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Fig. 10. d2 = 10−2.
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Fig. 11. d2 = 10−4.

Fig. 9 shows the numerical solution (z1, z2) by the pro-
posed method. Initial point is (1.0, 0.0, 0.0, 1.2) and pa-
rameters are set to ∆t = 0.005, l1 = l2 = l3 = 0.01, l4 =
0.03, d1 = d2 = d3 = 0.002, d4 = 0.0002. The problem
was solved for 0 ≤ t ≤ 150 (the solution goes around ap-
proximately 10 times). We observed that the energy, an-
gular momentum, and Runge–Lenz vector, which are the
global invariants of the Kepler problem, were in fact well
preserved up to the scheme accuracy, which describes the
beautiful elliptic trajectory of the numerical solution.

4.3 Harmonic oscillation: parameter tuning

Here we examine the effect of the parameter setting
to the numerical result, taking the harmonic oscillator:

d

dt

(
z1
z2

)
=

(
0 1
−1 0

)(
z1
z2

)
. (12)

Figs. 10 and 11 show the numerical solutions by the
proposed method when parameters are set to ∆t =
0.05, l1 = 0.1, l2 = 0.3, d1 = 10−2, d2 = 10−2 and
∆t = 0.05, l1 = 0.1, l2 = 0.3, d1 = 10−2, d2 = 10−4,
respectively. The exact solution is the unit circle, so Fig.
11 is qualitatively better. We compared the numerical
solution with various parameter settings, and found that
the mesh–size d2 in the direction of vector field is critical
for the final accuracy.

5. Concluding Remarks

In this paper, we proposed a new simple geometric in-
tegration approach based on local invariants, and showed
it actually works by several numerical examples. The
new approach automatically detects enough number of
invariants, and it can work also for non-conservative sys-
tems.
It should be noted, however, that the aim of this report

is just to point out the principle itself, and the practical
efficiency of the approach is left aside here. More careful
consideration is required to discuss the important point,
in connection with, for example, the choice of the dis-
crete gradients, how to efficiently and precisely compute
the local invariants, the tuning of the parameters, and
so on. It should be also noted that in this approach the
computational time obviously scales exponentially as the
dimension N increases, and some cost saving technique
should be incorporated.
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