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Abstract

We investigate the Block GMRES method for solving large and sparse linear systems with mul-
tiple right-hand sides. For solving linear systems with a single right-hand side, the Weighted
GMRES method based on the weighted minimal residual condition has been proposed as an
improvement of the GMRES method. In this paper, by applying the idea of the Weighted GM-
RES method to the Block GMRES method, we propose a Weighted Block GMRES method.
The numerical experiments indicate that the Weighted Block GMRES(m) method has higher
performance for efficient convergence than the Block GMRES(m) method.

Keywords large linear systems with multiple right-hand sides, the Block GMRES method,
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1. Introduction

In this paper, we consider solving large and sparse
linear systems with multiple right-hand sides of the form:

AX = B, A ∈ Cn×n, X,B ∈ Cn×l, (1)

where the coefficient matrix A is assumed to be non-
Hermitian and nonsingular. Such linear systems (1) of-
ten arise from the lattice quantum chromodynamics (lat-
tice QCD) calculations, eigensolvers based on the con-
tour integration and so on.
For solving such linear systems (1), two kinds of

Krylov subspace based methods: the Global Krylov sub-
space methods [1, 2]; and the Block Krylov subspace
methods [3, 4], have been well studied as extensions of
the standard Krylov subspace methods.
In this paper, we investigate one of the most ba-

sic Block Krylov subspace methods: the Block GMRES
method which is an extension of the GMRES method [5].
For solving linear systems with a single right-hand side,
the Weighted GMRES method [6] based on the weighted
minimal residual condition has been proposed as an im-
provement of the GMRES method. In order to improve
the convergence property of the Block GMRES method,
we apply the weighted minimal residual condition to the
linear systems with multiple right-hand sides (1) and
propose a Weighted Block GMRES method based on
the weighted minimal residual condition.
This paper is organized as follows. In Section 2, we

briefly describe the Weighted GMRES method for solv-
ing linear systems. In Section 3, we introduce the Block
GMRES method and propose a Weighted Block GM-
RES method. The performance of the Weighted Block
GMRES(m) method is evaluated by some numerical ex-
periments in Section 4. Our conclusions are summarized
in Section 5.

2. The Weighted GMRES method for

solving linear systems

The Krylov subspace methods are the most commonly
used methods for solving large and sparse linear systems:

Ax = b, A ∈ Cn×n, x, b ∈ Cn. (2)

Let x0 be an initial guess, and r0 := b−Ax0 be the cor-
responding initial residual. Then the Krylov subspace
methods construct the sequence of the approximate so-
lution xk and the corresponding residual rk := b−Axk:

xk = x0 + Vkyk, rk = r0 −AVkyk, yk ∈ Ck,

where the columns of the matrix Vk ∈ Cn×k are
the basis vectors of the Krylov subspace Kk(A, r0) :=
span{r0, Ar0, . . . , A

k−1r0}.
In what follows, we introduce basic ideas of the GM-

RES method in Section 2.1 and the Weighted GMRES
method in Section 2.2, respectively.

2.1 The GMRES method

The GMRES method is one of the most successful
Krylov subspace methods for solving non-Hermitian lin-
ear systems (2). It constructs the orthonormal basis
Vk, V

H
k Vk = I by the Arnoldi procedure and computes

the approximate solution by the minimal residual con-
dition:

min ∥rk∥2 ⇔ min
y∈Ck

∥r0 −AVky∥2. (3)

From the matrix formula of the Arnoldi procedure
AVk = Vk+1Hk and the minimal residual condition (3),
the vector yk is computed by

yk = arg min
y∈Ck

∥βe1 −Hky∥2,

where β = ∥r0∥2, e1 = [1, 0, . . . , 0]T ∈ Rk+1, and Hk is
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Algorithm 1 The GMRES(m) method [5]

1: Set an initial guess x0 and the restart frequency m
2: Compute r0 := b−Ax0

3: Compute β := ∥r0∥2,v1 := r0/β
4: for j = 1, 2, . . . ,m do:
5: Compute wj = Avj

6: for i = 1, 2, . . . , j do:
7: hi,j = vH

i wj

8: wj = wj − hi,jvj

9: end for
10: hj+1,j = ∥wj∥2
11: vj+1 = wj/hj+1,j

12: end for
13: Set Vm = [v1,v2, . . . ,vm],Hm = {hi,j}1≤i≤m+1,1≤j≤m

14: Compute ym = argminy∈Cm ∥βe1 −Hmy∥2
15: Compute xm = x0 + Vmym, if satisfied then stop
16: Update x0 = xm, and go to 2

a (k + 1)× k upper Hessenberg matrix.
The algorithm of the restarted version of the GMRES

method: the GMRES(m) method, can be shown in Al-
gorithm 1, where m is the restart frequency.

2.2 The Weighted GMRES method

In order to accelerate the convergence of the GMRES
method, the Weighted GMRES method has been pro-
posed by Essai in 1998 [6].
The D-inner product (u,v)D := uHDv and the cor-

responding D-norm ∥u∥D :=
√
uHDu have been in-

troduced in the paper [6], where D is a diagonal ma-
trix whose diagonal entries are all positive. The D-norm
∥u∥D satisfies the following relation:

V HDV = I ⇒ ∥V u∥D = ∥u∥2. (4)

Then, by using theD-orthonormal basis Ṽk, Ṽ
H
k DṼk =

I of the Krylov subspace, the Weighted GMRES method
adopts the weighted minimal residual condition:

min ∥rk∥D ⇔ min
y∈Ck

∥r0 −AṼky∥D, (5)

instead of the minimal residual condition (3) of the GM-
RES method.
From the matrix formula of the Weighted Arnoldi pro-

cedure AṼk = Ṽk+1H̃k and (4), the weighted minimal
residual condition (5) can be rewritten as

yk = arg min
y∈Ck

∥β̃e1 − H̃ky∥2,

where β̃ = ∥r0∥D,e1 = [1, 0, . . . , 0]T ∈ Rk+1.
For an efficient convergence, the weight matrix D can

be dynamically set in each restart cycle. In the paper
[6], the following definition was introduced:

D = diag(d), di =

√
n

∥r0∥2
|(r0)i|, (6)

where D is normalized such that ∥D∥F = ∥I∥F =
√
n.

The algorithm of the Weighted GMRES(m) method can
be shown in Algorithm 2.
Note that the Weighted GMRES(m) method can

also be regarded as the GMRES(m) method for solv-
ing (D1/2AD−1/2)(D1/2)x = D1/2b, where the diagonal

Algorithm 2 The Weighted GMRES(m) method [6]

1: Set an initial guess x0 and the restart frequency m
2: Compute r0 := b−Ax0

3: Set D, e.g., D := diag(d), di =
√
n|(r0)i|/∥r0∥2

4: Compute β̃ := ∥r0∥D, ṽ1 := r0/β̃
5: for j = 1, 2, . . . ,m do:
6: Compute w̃j = Aṽj

7: for i = 1, 2, . . . , j do:
8: h̃i,j = ṽH

i Dw̃j

9: w̃j = w̃j − h̃i,j ṽj

10: end for
11: h̃j+1,j = ∥w̃j∥D
12: ṽj+1 = w̃j/h̃j+1,j

13: end for
14: Set Ṽm = [ṽ1, ṽ2, . . . , ṽm], H̃m = {h̃i,j}1≤i≤m+1,1≤j≤m

15: Compute ym = argminy∈Cm ∥β̃e1 − H̃my∥2
16: Compute xm = x0 + Ṽmym, if satisfied then stop
17: Update x0 = xm, and go to 2

matrix D is dynamically set in each restart cycle.

3. A Weighted Block GMRES method

for solving linear systems with mul-

tiple right-hand sides

One of the simplest ideas for solving the linear sys-
tems with multiple right-hand sides (1) is to apply some
(preconditioned) Krylov subspace method to the linear
system with each right-hand side individually. In this ap-
proach, the Krylov subspaces are constructed and used
only for each right-hand side. As another approach, the
Block Krylov subspace methods have been proposed and
actively studied for solving the linear systems (1) simul-
taneously.
The basic idea of the Block Krylov subspace meth-

ods is to reuse each Krylov subspace for all right-
hand sides. Let X0 be an initial guess, and R0 =

[r
(1)
0 , r

(2)
0 , . . . , r

(l)
0 ] := B−AX0 be the corresponding ini-

tial residual. Then the Block Krylov subspace methods
construct the approximate solution Xk and the corre-
sponding residual Rk := B −AXk as follows:

Xk = X0+V □
k Yk, Rk = R0−AV □

k Yk, Yk ∈ C(k×l)×l,

where the columns of V □
k ∈ Cn×(k×l) are the basis of the

sum of the Krylov subspaces, i.e.,

K□
k (A,R0)

:= Kk(A, r
(1)
0 ) +Kk(A, r

(2)
0 ) + · · ·+Kk(A, r

(l)
0 ).

By reusing the Krylov subspace, the Block Krylov sub-
space methods often show more efficient convergence
property than the traditional Krylov subspace methods.
For the details, see, e.g., [7, 8] and references therein.
Here we note that the Global Krylov subspace meth-

ods use the Krylov subspaces Kk(A, r
(i)
0 ) independently

for constructing the approximate solutions, whereas the
Block Krylov subspace methods use the sum of the
Krylov subspaces K□

k (A,R0), see, e.g., [1, 2].
In what follows, we introduce basic ideas of the Block

GMRES method in Section 3.1 and propose a Weighted
Block GMRES method in Section 3.2.
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Algorithm 3 The Block GMRES(m) method [4]

1: Set an initial guess X0 and the restart frequency m
2: Compute R0 := B −AX0

3: Compute QR decomposition R0 = V1β
□

4: for j = 1, 2, . . . ,m do:
5: Compute Wj = AVj

6: for i = 1, 2, . . . , j do:
7: Hi,j = V H

i Wj

8: Wj = Wj − VjHi,j

9: end for
10: Compute QR decomposition Wj = Vj+1Hj+1,j

11: end for
12: Set V □

m = [V1, V2, . . . , Vm],H□
m = {Hi,j}1≤i≤m+1,1≤j≤m

13: Compute Ym = argminY ∈C(m×l)×l ∥E1β
□ −H□

mY ∥F
14: Compute Xm = X0 + V □

mYm, if satisfied then stop
15: Update X0 = Xm, and go to 2

3.1 The Block GMRES method

The Block GMRES method is a natural extension of
the GMRES method for solving linear systems with mul-
tiple right-hand sides (1). It constructs the orthonormal

basis V □
k , V □

k

H
V □
k = I by the Block Arnoldi procedure

and computes the approximate solution by the minimal
residual condition:

min ∥Rk∥F ⇔ min
Y ∈C(k×l)×l

∥R0 −AV □
k Y ∥F. (7)

From the matrix formula of the Block Arnoldi proce-
dure AV □

k = V □
k+1H

□
k and the minimal residual condi-

tion (7), the matrix Yk is computed by

Yk = arg min
Y ∈C(k×l)×l

∥E1β
□ −H□

k Y ∥F,

where β□ ∈ Cl×l is the upper triangular matrix com-
puted by the QR decomposition of R0: R0 = V1β

□, and
E1 ∈ R((k+1)×l)×l is the first l columns of the identity
matrix. Here we note that H□

k is the [(k+1)× l]×(k× l)
upper banded Hessenberg matrix with bandwidth l.
The algorithm of the Block GMRES(m) method can

be shown in Algorithm 3.

3.2 Proposal for a Weighted Block GMRES method

In order to improve the convergence property of the
Block GMRES method, we propose a Weighted Block
GMRES method based on a weighted minimal residual
condition for the linear systems with multiple right-hand
sides (1).
Firstly, we introduce a matrix D-norm as follows:

∥X∥D :=
√
tr(XHDX),

as well as the Weighted GMRES method, where D is a
diagonal matrix whose diagonal entries are all positive.
This matrix D-norm satisfies the following relations:

∥X∥D ≥ 0, ∥X∥D = 0 iff X = O,

∥αX∥D = |α|∥X∥D, α ∈ C,

∥X + Y ∥D ≤ ∥X∥D + ∥Y ∥D,

for any X,Y ∈ Cn×m, and

V HDV = I ⇒ ∥V X∥D = ∥X∥F. (8)

Algorithm 4 A Weighted Block GMRES(m) method

1: Set an initial guess X0 and the restart frequency m
2: Compute R0 := B −AX0

3: Set D, e.g., (10).

4: Compute WQR decomposition R0 = Ṽ1β̃
□

5: for j = 1, 2, . . . ,m do:
6: Compute W̃j = AṼj

7: for i = 1, 2, . . . , j do:
8: H̃i,j = Ṽ H

i DW̃j

9: W̃j = W̃j − ṼjH̃i,j

10: end for
11: Compute WQR decomposition W̃j = Ṽj+1H̃j+1,j

12: end for
13: Set Ṽ □

m = [Ṽ1, Ṽ2, . . . , Ṽm], H̃
□
m = {H̃i,j}1≤i≤m+1,1≤j≤m

14: Compute Ym = argminY ∈C(m×l)×l ∥E1β̃
□ − H̃

□
mY ∥F

15: Compute Xm = X0 + Ṽ □
mYm, if satisfied then stop

16: Update X0 = Xm, and go to 2

This is also a natural extension of the Frobenius-norm,
because of

∥X∥I =
√
tr(XHX) = ∥X∥F.

Then, by using the D-orthonormal basis Ṽ □
k of

K□
k (A,R0), which satisfies (Ṽ □

k )HDṼ □
k = I, the

Weighted Block GMRES method adopts a weighted
minimal residual condition for the linear systems with
multiple right-hand sides (1), i.e.,

min ∥Rk∥D ⇔ min
Y ∈C(k×l)×l

∥R0 −AṼ □
k Y ∥D, (9)

instead of the minimal residual condition (7) of the
Block GMRES method. From the matrix formula of a

Weighted Block Arnoldi procedure AṼ □
k = Ṽ □

k+1H̃
□
k and

(8), the weighted minimal residual condition (9) can be
rewritten as

Yk = arg min
Y ∈C(k×l)×l

∥E1β̃
□ − H̃

□
k Y ∥F,

where β̃□ ∈ Cl×l is the upper tridiagonal matrix com-
puted by the Weight QR (WQR) decomposition of R0:

R0 = Ṽ1β̃
□, Ṽ H

1 DṼ1 = I, and E1 ∈ R((k+1)×l)×l is
the first l columns of the identity matrix. Here we
note that the Weighted Block GMRES method with
D = I is mathematically equivalent to the Block GM-
RES method. The algorithm of the Weighted Block
GMRES(m) method, can be shown in Algorithm 4.
Note that the Weighted Block GMRES(m) method

can also be regarded as the Block GMRES(m) method
for solving (D1/2AD−1/2)(D1/2)X = D1/2B, where the
matrix D is dynamically set in each restart cycle.

4. Numerical experiments and results

In this section, we evaluate the performance of the
Weighted Block GMRES(m) method, and compare it
with the Block GMRES(m) method. Here we do not use
any preconditioners, because the proposed method is in-
dependent of preconditioning techniques and we can sim-
ilarly apply preconditioning techniques to both methods.
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Table 1. Convergence results (Restart : number of restart cycle,
trestart : computation time per restart, ttotal : total computation

time, TRR : True Relative Residual) of the Block GMRES(m)
method and the Weighted Block GMRES(m) method.

Method Restart Time [sec.] TRR
trestart ttotal

COUPLED

Bl-GMRES † 2.48E-01 8.26E+02 -5.05
W-Bl-GMRES 1526 2.48E-01 3.79E+02 -12.03

FEM 3D THERMAL1

Bl-GMRES 15 4.36E-01 6.54E+00 -12.44

W-Bl-GMRES 13 4.35E-01 5.66E+00 -12.71

MEMPLUS

Bl-GMRES 393 3.96E-01 1.56E+02 -12.00
W-Bl-GMRES 161 3.99E-01 6.42E+01 -12.01

NS3DA

Bl-GMRES 111 8.42E-01 9.35E+01 -12.08

W-Bl-GMRES 121 8.43E-01 1.02E+02 -12.07

4.1 Numerical experiments

For the test problems, we use the following matri-
ces: COUPLED (n = 11341, Nnz = 98523) of the
circuit simulation; FEM 3D THERMAL1 (n = 17880,
Nnz = 430740) of the thermal problem; MEMPLUS
(n = 17758, Nnz = 126150) of the circuit simulation;
NS3DA (n = 20414, Nnz = 1679599) of the fluid dy-
namics, which are obtained from [9].
We set the number of linear systems l = 4 and

the restart frequency m = 30. We also set B as a
random matrix for the right-hand sides, X0 = O for
the initial guess, and the stopping criterion was set as
∥Rk∥F/∥B∥F ≤ 10−12. The weight matrix D of the
Weighted Block GMRES(m) method was set as follows:

D = diag(d), di =

√
n

∥R0∥F

√√√√ n∑
j=1

|(R0)i,j |2, (10)

where D was normalized such that ∥D∥F = ∥I∥F =
√
n.

This is a natural extension of (6), because it is equivalent
to (6) in the case of l = 1.
The numerical experiments were carried out in double

precision arithmetic on OS: CentOS 64bit, CPU: Intel
Xeon X5550 2.67GHz (1 core), Memory: 48GB, Com-
piler: GNU Fortran ver. 4.1.2, Compile option: -O3.

4.2 Numerical results

We present the numerical results in Table 1. In this
table, a symbol † denotes that the method did not con-
verge within 100000 iterations.
From Table 1, we can see that the Weighted

Block GMRES(m) method shows almost the same or
more efficient convergence property than the Block
GMRES(m) method. Especially, for COUPLED, the
Block GMRES(m) method did not converge within the
100000 iterations; on the other hand, the Weighted Block
GMRES(m) method could obtain the approximate so-
lution satisfies required accuracy ∥Rk∥F/∥B∥F ≤ 10−12

with much smaller number of iterations.
In terms of the computation time per restart cycle

(trestart), we can also observe that the Block GMRES(m)
method and the Weighted Block GMRES(m) method
have almost the same trestart. This derives from the

fact that the incremental cost of the Weighted Block
GMRES(m) method per restart cycle is only for compu-
tations with respect to the matrix D, which is relatively
smaller than for the matrix operation with respect to A.
In terms of the total computation time (ttotal), from

the better convergence property and almost the same
computation time per restart, the Weighted Block
GMRES(m) method could solve the linear systems with
multiple right-hand sides with the less computation time
than the Block GMRES(m) method.

5. Conclusions

In this paper, in order to improve the convergence
of the Block GMRES method, we have proposed the
Weighted Block GMRES method based on the weighted
minimal residual condition (9) for solving the linear sys-
tems with multiple right-hand sides (1). From our nu-
merical experiments, we have learned that the Weighted
Block GMRES(m) method is more robust than the
Block GMRES(m) method.
For future work, we will compare the proposed

method with other methods, e.g., the Weighted Global
GMRES(m) method. We also need to investigate the
specific definition of D for efficient convergence.
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