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Abstract

This paper presents analytic solutions of the shape derivatives (Fréchet derivatives with re-
spect to domain variation) for singular points of cost functions in shape-optimization prob-
lems for the domain in which the boundary value problem of a partial differential equation is
defined. A design variable is given by a domain mapping. Cost functions are defined as func-
tionals of the design variable and the solution to the boundary value problem. The analytic
solutions for singular points such as crack tips and boundary points of the mixed boundary
conditions on a smooth boundary are obtained by using the generalized J integral.
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1. Introduction

Determining the optimum shape of the domain in
which a boundary value problem of a partial differential
equation is defined is called a shape-optimization prob-
lem. One way to formulate this problem is to choose
the domain mapping as the design variable. Cost func-
tions are defined as functionals of the design variable and
the solution to the boundary value problem. The shape
derivatives, which are defined as the Fréchet deriva-
tives with respect to domain variation, of the cost func-
tions can be evaluated assuming appropriate regularity
in the boundary value problem. Solution using the shape
derivative is presented in [1].
On the other hand, in research of evaluating the sin-

gularity of a crack, the generalized J integral was pro-
posed [2], and its relation to the shape derivative of a
cost function has been presented [3–5]. However, the an-
alytic solution at the singular point has not been shown.
The present paper is dedicated to obtaining the ana-

lytic solutions of the shape derivatives for singular points
such as crack tips and boundary points of the mixed
boundary conditions on a smooth boundary by the use
of the generalized J integral.

2. Set of design variable

Let Ω0 depicted in Fig. 1 be a two-dimensional
bounded domain, where the boundary ∂Ω0 consists of
Dirichlet boundary ΓD0 ⊂ ∂Ω0 and Neumann boundary
ΓN0 = ∂Ω0 \ Γ̄D0.
For j ∈ ΘN = {1, . . . , |ΘN|}, let xj0 (note, x10 is

hidden in Fig. 1) be corner points on ΓN0 having con-
cave angles of α0j ∈ (π, 2π]. In the same manner, for
j ∈ ΘD = {|ΘN|+ 1, . . . , |ΘN|+ |ΘD|}, let xj0 be corner
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Fig. 1. Varying 2-dimensional domain with corner points.

points inside of ΓD0 with α0j ∈ (π, 2π]. Moreover, for
j ∈ ΘM = {|ΘN|+ |ΘD|+ 1, . . . , |ΘN|+ |ΘD|+ |ΘM|},
let xj0 be corner points on the boundary of the mixed
boundary conditions having an opening angle of α0j ∈
(π/2, 2π]. In the present paper, we call these points the
singular points, and define the set of their indexes as
Θ = ΘN ∪ΘD ∪ΘM. The remaining part of the bound-
ary is assumed to be sufficiently smooth.
We define design variable in a shape optimization

problem by domain variation ϕ, with which a varied
domain is created by continuous one-to-one mapping
i + ϕ : Ω0 → R2 as Ω (ϕ) = { (i+ ϕ) (x) | x ∈ Ω0}.
The symbol i is used as the identity mapping in
the present paper. The notation ( · ) (ϕ) is used as
{ (i+ ϕ) (x) | x ∈ ( · )0} for domains and boundaries. To
keep continuous one-to-one mapping property, we define
the admissible set of ϕ as

D = {ϕ ∈ Y | ∥ϕ∥Y < σ } , (1)

where Y is defined by W 1,∞ (
R2;R2

)
, and σ > 0 is cho-

sen such that (i+ ϕ) is a bijection [4, Proposition 1.39].
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The domain of ϕ is extended to R2 by Calderón’s ex-
tension theorem [6]. In the present paper, Y is used as
the Banach space for the perturbation φ of ϕ in order
to define the Fréchet derivatives as shown later.

3. Main problem

For simplicity, we use the Poisson problem as the main
problem. The solution to the main problem is called the
state variable in the shape optimization problem. We
denote the outer unit normal by ν, and ∂ν = ν ·∇.

Problem 1 (Main problem) Let b : R2 → R be a
function not depending on ϕ that is sufficiently smooth.
For a given ϕ ∈ D, find u (ϕ) : Ω (ϕ) → R such that

−∆u (ϕ) = b in Ω(ϕ) ,

∂νu (ϕ) = 0 on ΓN (ϕ) ,

u (ϕ) = 0 on ΓD (ϕ) .

If b is given appropriately, the weak solution u (ϕ) to
Problem 1 lies within U = H1 (Ω (ϕ) ;R). The domain
of u (ϕ) can be extended to R2 by Calderón’s extension
theorem. Moreover, in the present paper, we define the
admissible set of the state variable u (ϕ) by

S =W 1,2q
(
R2;R

)
(2)

for some q > 2. In [1], u (ϕ) ∈ S is used as a necessary
condition in order to obtain the domain variation in Y
without singular points by the H1 gradient method. In
the present paper, we clarify the conditions for singular
points in order that u (ϕ) is included in S.

4. Shape optimization problem

Using the design variable ϕ ∈ D and the state variable
u = u (ϕ) ∈ S, we define cost functions as

fi (ϕ, u) =

∫
Ω(ϕ)

ζi (ϕ, u,∇u) dx+ ci (3)

for i ∈ {0, 1, . . . ,m}, where ζi and their derivatives are
sufficiently smooth, and c0, . . . , cm are given constants.
Among the m+1 cost functions, f0 is called an objective
function, and f1, . . . , fm are called constraint functions.
Using the cost functions f0, . . . , fm, we define the

shape optimization problem as follows.

Problem 2 (Shape optimization) Let D and S be
given by (1) and (2), respectively, and f0, . . . , fm be as
defined in (3). Find Ω(ϕ) with ϕ such that

ϕ = arg min
ϕ∈D

{f0 (ϕ, u) | fi (ϕ, u) ≤ 0

for i ∈ {1, . . . ,m} , u ∈ S, Problem 1} .

5. Shape derivative of cost functions

For i ∈ {1, . . . ,m}, the Fréchet derivatives (we fol-
low [4, Definition 1.8]) with respect to arbitrary domain
variation φ ∈ Y of fi are obtained in [1] as

⟨gi,φ⟩ =
∫
Ω(ϕ)

[
∇u ·

(
∇φT∇vi

)
+∇vi ·

(
∇φT∇u

)
+ (ζiϕ (ϕ, u,∇u) + vi∇b) ·φ
+ (ζi −∇u ·∇vi + bvi)∇ ·φ

]
dx. (4)

Here, vi ∈ U is called the adjoint variable for fi, and is
given as the weak solution of the following problem.

Problem 3 (Adjoint problem for fi) For a given
ϕ ∈ D, let u be the solution to Problem 1 and ζi be
the function in (3). Find vi : Ω (ϕ) → R such that

−∆vi (ϕ) = ζiu (ϕ, u,∇u) +∇ · ζi∇u (ϕ, u,∇u)

in Ω(ϕ) ,

∂νvi (ϕ) = 0 on ΓN (ϕ) ,

vi (ϕ) = 0 on ΓD (ϕ) .

In [1], it is shown that if u and vi are in S, gi belongs
to Lq

(
Ω(ϕ) ;R2

)
, and the domain variation obtained by

the H1 gradient method belongs to Y without singular
points.
In the present paper, we pay attention to the range of

the opening angles for singular points in order that u and
vi are included in S, and obtain the analytic solutions
of the shape derivative at the crack tip and the bound-
ary point of the mixed boundary conditions on smooth
boundary.

6. Regularity of u and vi at corner

For the regularities of u and vi, the following results
have been known [7–9].
We suppose that ∂Ω(ϕ) \ {xj (ϕ)}j∈Θ is sufficiently

smooth in the following argument. If we let B (xj (ϕ) , ϵ)
be the disc of radius ϵ centered at xj (ϕ), then u has the
expression for a point x−xj (ϕ) = reiθ ∈ B (xj (ϕ) , ϵ)∩
Ω(ϕ) of

u
(
reiθ

)
= kj (ϕ) r

π
αj(ϕ) cos

π

αj (ϕ)
θ + uR for j ∈ ΘN,

(5)

u
(
reiθ

)
= kj (ϕ) r

π
αj(ϕ) sin

π

αj (ϕ)
θ + uR for j ∈ ΘD,

(6)

u
(
reiθ

)
= kj (ϕ) r

π
2αj(ϕ) sin

π

2αj (ϕ)
θ + uR for j ∈ ΘM,

(7)

where kj (ϕ) are constants, and uR stands for the term
in H2 (B (xj (ϕ) , ϵ) ∩ Ω (ϕ) ;R).
A derivative of u = rωψ (θ) behaves as a finite

sum of functions rω−1ψ̃ (θ), where ψ (θ) and ψ̃ ∈
C∞ ([0, αj ] ;R). The p-th power of rω−1ψ̃(θ) is integrable
in B (xj (ϕ) , ϵ)∩Ω(ϕ) iff p (ω − 1)+1 > −1. This means

u ∈W 1,p(B (xj (ϕ) , ϵ) ∩ Ω(ϕ) ;R) for ω > 1−2

p
. (8)

We now obtain the following.

Theorem 4 (Regularity of u and vi at corner)
For j ∈ ΘN ∪ΘD, the weak solutions u and vi to Prob-
lem 1 and Problem 3, respectively, come into lie within
S if αj (ϕ) ∈ (0, 2π). For j ∈ ΘM, the weak solutions u
and vi come into lie within S if αj (ϕ) ∈ (0, π).

The case αj (ϕ) = 2π in j ∈ ΘN ∪ΘD corresponds to
the crack. The case αj (ϕ) = π in j ∈ ΘM corresponds
to the boundary point of the mixed boundary conditions
on smooth boundary, which we call the smooth mixed
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boundary. In the next section, we shall show how to
evaluate the shape derivative gi in these cases.

7. Evaluation of gi by generalized J-

integral

To evaluate the shape derivative gi in the cases that
αj (ϕ) = 2π in j ∈ ΘN ∪ΘD and αj (ϕ) = π in j ∈ ΘM,
we use the generalized J integral. The generalized J in-
tegral is defined in terms of the solution to an elliptic
boundary value problem and domain variation. Here,
using the solution u = u (ϕ) ∈ U to Problem 1 and
domain variation φ ∈ Y , and following [3–5], we define
the generalized J integral as

J (Ω (ϕ) ,φ, u)

= P (∂Ω(ϕ) ,φ, u) + R (Ω (ϕ) ,φ, u) , (9)

where

P (∂Ω(ϕ) ,φ, u)

=

∫
∂Ω(ϕ)

[
1

2
(∇u ·∇u)ν ·φ− ∂νu∇u ·φ

]
dγ (10)

R (Ω (ϕ) ,φ, u)

= −
∫
Ω(ϕ)

[
b∇u ·φ−∇u ·

(
∇φT∇u

)
+

1

2
(∇u ·∇u)∇ ·φ

]
dx. (11)

For J , the following properties have been obtained [3].

Theorem 5 (Properties of gen. J-integral) For
ϕ ∈ D, let J (Ω (ϕ) ,φ, u) be defined in (9) with the
weak solution u ∈ U to Problem 1 and domain variation
φ ∈ Y . For all φ ∈ Y , the following hold.

(1) R (Ω (ϕ) ,φ, u) has finite value for u ∈ U .

(2) For a Lipschitz domain Σ ⊂ R2, if u|Σ∩Ω(ϕ) is of

class H2, then

J (Σ ∩ Ω(ϕ) ,φ, u) = 0 (12)

holds.

(3) Let Σ ⊂ R2 be separated into Σ1 and Σ2 such that
Σ1 ∩ Σ2 = ∅ and Σ̄ = Σ̄1 ∪ Σ̄2. If u is of class H2

on neighborhood of ∂Σ1 and ∂Σ2, then

J (Σ ∩ Ω(ϕ) ,φ, u) = J (Σ1 ∩ Ω(ϕ) ,φ, u)

+ J (Σ2 ∩ Ω(ϕ) ,φ, u)
(13)

holds.

Let us rewrite gi using the properties in Theorem 5.
The partial Fréchet derivatives of P and R with respect
to arbitrary variation vi ∈ U of u can be written as

− Pu (∂Ω (ϕ) ,φ, u) [vi]

=

∫
∂Ω(ϕ)

[
(∇u ·∇vi)ν ·φ− ∂νu∇vi ·φ

− ∂νvi∇u ·φ
]
dγ (14)

Ru (Ω (ϕ) ,φ, u) [vi]

= −
∫
Ω(ϕ)

[
b∇vi ·φ−∇u ·

(
∇φT∇vi

)

(Á)
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Fig. 2. Path for the boundary integral of Pu.

−∇vi ·
(
∇φT∇u

)
+ (∇u ·∇vi)∇ ·φ

]
dx. (15)

Here, by comparing (4) and (15), we have

⟨gi,φ⟩ = Ru (Ω (ϕ) ,φ, u) [vi] + ⟨giR,φ⟩ , (16)

where

⟨giR,φ⟩ =
∫
∂Ω(ϕ)

bviν ·φ dγ

+

∫
Ω(ϕ)

(ζiϕ (ϕ, u,∇u) ·φ+ ζi∇ ·φ) dx.

(17)

Moreover, denoting the ϵ-neighborhood of the singular
points by BΘ =

∪
j∈ΘB (xi (ϕ) , ϵ), separating Ω (ϕ)

into Ω (ϕ) \BΘ and Ω (ϕ)∩BΘ, and applying the prop-
erties of (ii) and (iii) in Theorem 5, we have

Ru (Ω (ϕ) ,φ, u) [vi]

= −Pu (∂ (Ω (ϕ) \BΘ) ,φ, u) [vi]

+
∑
j∈Θ

Ru (B (xi (ϕ) , ϵ) ∩ Ω(ϕ) ,φ, u) [vi] . (18)

The dotted line in Fig. 2 shows the path for the boundary
integral of Pu around the boundary point of the mixed
boundary conditions on the smooth boundary (αj (ϕ) =
π). Here, when ϵ → 0, the second term on the right-
hand side of (18) converges to 0. The first term on the
right-hand side of (18) can be written as

−Pu (∂Ω(ϕ) ,φ, u) [vi] +
∑
j∈Θ

⟨
ĝij ,φ

⟩
, (19)

where⟨
ĝij ,φ

⟩
= lim

ϵ→0
−
∫ α

0

{
(∇u ·∇vi)ν ·φ

− ∂νu∇vi ·φ− ∂νvi∇u ·φ
}
ϵdθ.

(20)

Hence, if the right-hand side of (20) converges, we have

⟨gi,φ⟩ =− Pu (∂Ω(ϕ) ,φ, u) [vi] +
∑
j∈Θ

⟨
ĝij ,φ

⟩
+ ⟨giR,φ⟩ . (21)

8. gi at crack tip and smooth mixed

boundary

Based on the result in (21), we show the analytic so-
lutions of ĝij in two cases as follows.
One case is that of a crack tip on ΓN (ϕ)∪ΓD (ϕ), i.e.,
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xj of αj (ϕ) = 2π for j ∈ ΘN ∪ ΘD. In a neighborhood
of the point, we have the solution u to Problem 1 by (5)
and the solution vi to Problem 3 by

vi
(
reiθ

)
= lij (ϕ) r

π
αj(ϕ) cos

π

αj (ϕ)
θ + viR, (22)

were lij (ϕ) is a constant, and viR is the term in
H2 (B (xj (ϕ) , ϵ) ∩ Ω(ϕ)). In the following, we neglect
the regular terms of uR and viR by taking a sufficiently
small ϵ. Here, putting r = ϵ, αj (ϕ) = 2π, and calculat-
ing the derivatives of (5) and (22), we have

∇u =

(
cos θ ∂

∂r − sin θ
r

∂
∂θ

sin θ ∂
∂r + cos θ

r
∂
∂θ

)
u =

kj

2ϵ
1
2

(
cos

(
θ
2

)
sin

(
θ
2

)) , (23)

∇vi =
lij

2ϵ
1
2

(
cos

(
θ
2

)
sin

(
θ
2

)) . (24)

From these results, we have

∇u ·∇vi =
kj lij
4ϵ

. (25)

Then, for all φ = (φ1, φ2)
T ∈ R2,

−
∫ 2π

0

(∇u ·∇vi)ν ·φ ϵdθ

=

∫ 2π

0

kj lij
4

(φ1 cos θ + φ2 sin θ) dθ = 0 (26)

holds. Moreover, we have

∂νu = ν ·∇u =
kj

2ϵ
1
2

(
− cos θ
− sin θ

)
·
(
cos

(
θ
2

)
sin

(
θ
2

))
= − kj

2ϵ
1
2

cos

(
θ

2

)
, (27)

∂νu∇vi = −kj lij
4ϵ

cos

(
θ

2

)(
cos

(
θ
2

)
sin

(
θ
2

)) . (28)

Then, for all φ = (φ1, φ2)
T ∈ R2,∫ 2π

0

∂νu∇vi ·φ ϵdθ

=

∫ 2π

0

∂νvi∇u ·φ ϵ dθ = −kj lij
4

(
π
0

)
·
(
φ1

φ2

)
(29)

holds. From these results, the analytic solution at the
crack tip can be obtained by⟨

ĝij ,φ
⟩
= −kj lij

2

(
π
0

)
·
(
φ1

φ2

)
. (30)

We can confirm that ĝij points to the crack plane.
The other one is the case of the boundary point of the

mixed boundary conditions on smooth boundary, i.e.,
xj of αj (ϕ) = π for j ∈ ΘM. In a neighborhood of
the point, using (7) for u

(
reiθ

)
, and (22) for vi

(
reiθ

)
in

which cos and αj (ϕ) are replaced by sin and 2αj (ϕ),
we use ∫ π

0

kj lij
4

(φ1 cos θ + φ2 sin θ) dθ =
kj lij
2

φ2

instead of (26). Moreover, we have∫ π

0

∂νu∇vi ·φ ϵdθ =
∫ π

0

∂νvi∇u ·φ ϵdθ

=
kj lij
8

(
π
−2

)
·
(
φ1

φ2

)
instead of (29). Then, the analytic solution at the bound-
ary point can be obtained as⟨

ĝij ,φ
⟩
=
kj lij
4

(
π
0

)
·
(
φ1

φ2

)
. (31)

From the equations above, we have the following.

Theorem 6 (gi at crack tip and s. mixed bound.)
If αj (ϕ) = 2π at xj (ϕ) for j ∈ ΘN ∪ ΘD, gi defined

by (4) is given by (21), where ĝij is given by (30). If
αj (ϕ) = π at xj (ϕ) for j ∈ ΘM, gi defined by (4) is
given by (21), where ĝij is given by (31).

From the calculation above, it becomes clear that the
shape derivative is not evaluated in the case of an open-
ing angle greater than π for the boundary point of the
mixed boundary conditions, because ĝij → ∞ as ϵ→ 0.

9. Conclusions

In the present paper, we showed the following.

(1) If the assumption in Theorem 4 is satisfied, then
the solutions to the main problem and the adjoint
problem are included in the admissible set of state
variable S in (2).

(2) The shape derivatives at the crack tip and the
boundary point of the mixed boundary conditions
on a smooth boundary are obtained as stated in
Theorem 6.
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