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Abstract

This paper analyzes the problem of speeding up single-scalar multiplication of a recently
introduced type of elliptic curve, so-called “twisted Edwards curve”, and also presents a new
construction of addition chains using the extended double-base number system. Our method
uses the Fibonacci sequence. It was found through numerical investigation that our double-
base chains can save time, compared with other methods in previous work.

Keywords twisted Edwards curves, extended double-base number system, Fibonacci se-
quence, single-scalar multiplication

Research Activity Group Algorithmic Number Theory and Its Applications

1. Introduction

In [1], Edwards introduced a new normal form for el-
liptic curves, now known as Edwards curves, for which
the addition law is efficient. In [2], Doche and Imbert
introduced a new number system called the extended
double-base number system. The idea is to expand a
positive integer n as a sum

∑
i di2

ai3bi of as few terms
as possible, with di or −di which is chosen from a coef-
ficient set S larger than {1}, and with the restrictions
a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · . Then, one can ex-
press a scalar multiple [n]P as a sum

∑
i[di2

ai3bi ]P of
very few points. In [3], Bernstein et al. analyzed the best
speeds that can be obtained for single-scalar multiplica-
tion with various elliptic curves by using the extended
double-base number system.
In this paper, we analyze the best speeds with twisted

Edwards curves, introduced in [4], using the conventional
coefficient set S, as well as another one previously unseen
in the literature. Our coefficient set includes a subset of
the Fibonacci sequence. By using our new double-base
chains, we can speed up for single-scalar multiplication.
The plan of the paper is as follows. In Section 2, we

recall the definition of the twisted Edwards curves, and
of three coordinate systems on these curves [4,5]: projec-
tive twisted Edwards; inverted twisted Edwards; and ex-
tended twisted Edwards. We also show new tripling for-
mulas that are needed in making up double-base chains.
In Section 3, we review the extended double-base num-
ber system, and present a new choice of S. Our experi-
ments and results are described in Section 4 before con-
cluding with Section 5.

2. Twisted Edwards curves

Definition 1 ([4]) Let k be a field of odd character-
istic, and a, d ∈ k with ad(a − d) ̸= 0. The twisted
Edwards curve with coefficients a and d is the curve
EE,a,d : ax2 + y2 = 1 + dx2y2.

Let (0, 1) be the neutral element of the group. Then the
inversion of P = (x1, y1) is written by (−x1, y1).

2.1 Addition law
Let P = (x1, y1), Q = (x2, y2) be points on the twisted

Edwards curve EE,a,d. The sum of these points on EE,a,d

is

P +Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

This formula also works for doubling, i.e., P = Q. Then
we can obtain tripling formulas. One can triple a point
by first doubling it and then adding the result to itself
by applying the curve equation as in doubling. (x3, y3) =
[3](x1, y1), with

x3 =
(ax2

1 + y21)
2 − (2y1)

2

4a(ax2
1 − 1)x2

1 − (ax2
1 − y21)

2
x1,

y3 =
(ax2

1 + y21)
2 − a(2x1)

2

−4(y21 − 1)y21 + (ax2
1 − y21)

2
y1.

2.2 Coordinates
Bernstein and Lange gave efficient formulas for the

group operations. They introduced projective coordi-
nates and inverted coordinates in [4]. In [5], Hisil et
al. proposed a new system called extended twisted Ed-
wards coordinates. We review these coordinates and
show tripling algorithms.

2.3 Projective twisted Edwards coordinates
To avoid inversions, Bernstein and Lange work on the

projective twisted Edwards curve

(aX2 + Y 2)Z2 = Z4 + dX2Y 2. (1)

For Z1 ̸= 0, the homogeneous point (X1 : Y1 : Z1) rep-
resents the affine point (X1/Z1, Y1/Z1) on EE,a,d.

2.4 Inverted twisted Edwards coordinates
Another way to avoid inversions is using a point (X1 :

Y1 : Z1), with X1Y1Z1 ̸= 0 to represent the affine point
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(Z1/X1, Z1/Y1) on EE,a,d.

2.5 Extended twisted Edwards coordinates

Hisil et al. proposed using a point (X1 : Y1 : T1 :
Z1), with Z1 ̸= 0 which satisfies (1) and corresponds to
the extended affine point (X1/Z1, Y1/Z1, T1/Z1). Here,
T1 = X1Y1/Z1. Next, we show new tripling algorithms
for these coordinates. Here,M is a field multiplication, S
is a field squaring, and D is a multiplication by a or d.

2.6 Tripling in inverted twisted Edwards coordinates

The following sets of formulas compute (X3 : Y3 :
Z3) = [3](X1 : Y1 : Z1). The first one costs 9M + 4S +
2D, while the second needs 7M + 7S + 2D. Here are
9M+ 4S+ 2D formulas for tripling:

A← X2
1 , B ← aY 2

1 , C ← Z2
1 , D ← A+B,

E ← 4(D − d · C), H ← 2D · (B −A),
P ← D2 −A · E, Q← D2 −B · E,
X3 ← (H +Q) ·Q ·X1, Y3 ← (H − P ) · P · Y1,
Z3 ← P ·Q · Z1.

Here are 7M+ 7S+ 2D formulas for tripling:

A← X2
1 , B ← aY 2

1 , C ← Z2
1 , D ← A+B,

E ← 4(D − d · C), H ← 2D · (B −A),
P ← D2 −A · E, Q← D2 −B · E,
X3 ← (H +Q) · [(Q+X1)

2 −Q2 −A],
Y3 ← 2(H − P ) · P · Y1,
Z3 ← P · [(Q+ Z1)

2 −Q2 − C].

2.7 Tripling in extended twisted Edwards coordinates

The following sets of formulas compute (X3 : Y3 :
T3 : Z3) = [3](X1 : Y1 : T1 : Z1). The first one costs
11M+4S+1D, while the second needs 9M+7S+1D.
Here are 11M+ 4S+ 1D formulas for tripling:

A← aX2
1 , B ← Y 2

1 , C ← (2Z1)
2, D ← A+B,

E ← D2, F ← 2D · (A−B), G← E −B · C,
H ← E −A · C, I ← F +H, J ← F −G,
X3 ← G · J ·X1, Y3 ← H · I · Y1,
T3 ← G ·H · T1, Z3 ← I · J · Z1.

Here are 9M+ 7S+ 1D formulas for tripling:

A← aX2
1 , B ← Y 2

1 , C ← Z2
1 , D ← A+B,

E ← D2, F ← 2D · (A−B), K ← 4C,
L← E −B ·K, M ← E −A ·K, N ← F +M,
O ← N2, P ← F − L, X3 ← 2L · P ·X1,
Y3 ←M · [(N + Y1)

2 −O −B], T3 ← 2L ·M · T1,
Z3 ← P · [(N + Z1)

2 −O − C].

When one computes tripling in projective twisted Ed-
wards coordinates, one can compute in extended twisted
Edwards coordinates by simply ignoring T . The costs in
projective coordinates can be reduced 2M rather than
the costs of using extended coordinates. By using tripling
formulas, we can reduce multiplication costs less than
the costs of using mixing doubling and addition formu-
las. Extended coordinates are faster than projective co-
ordinates and inverted coordinates, while in doubling
and tripling, projective coordinates and inverted coor-
dinates are faster than extended coordinates.

3. Extended double-base number system

This section reviews the extended double-base number
system (extended DBNS, for short) for computing [n]P
given P . Let S be a set containing 1. Every positive
integer n can be represented as n = Σm

i=1di2
ai3bi , with

|di| ∈ S, a0 ≥ a1 ≥ a2 ≥ · · · ≥ am ≥ 0, and b0 ≥ b1 ≥
b2 ≥ · · · ≥ bm ≥ 0. This approach is called extended
DBNS.
This representation is not unique. Bernstein et al.

optimized single-scalar multiplication using extended
DBNS. They analyzed various elliptic curves containing
Edwards curves. However, twisted Edwards curves are
not contained. We analyze projective twisted Edwards
coordinates, inverted twisted Edwards coordinates, and
extended twisted Edwards coordinates. We also propose
a new precomputation set S for single-scalar multiplica-
tion, and optimize the best speeds that can be obtained.

3.1 A new choice of a coefficient set S
We reviewed extended DBNS above. It is significant

to choose a proper coefficient set S. If one chooses a
better set, single-scalar multiplication can be computed
faster. We propose a new coefficient set containing F2 =
1, F3 = 2, . . . . Here, Fi is i-th Fibonacci number. For
example, if #S = 6, we make up S = {1, 2, 3, 5, 8, 13}.
If the number of elements in S is larger, one can choose
larger coefficients, and it is possible to make up more
efficient extended DBNS expansions. Moreover, by cal-
culating the precomputation points [2]P, [3]P, [5]P =
[2]P + [3]P, [8]P = [3]P + [5]P, . . . , in order, the initial
computation of [c]P for each c ∈ S can be calculated
efficiently.

3.2 Example.

Take the integer n = 264290. We consider two coeffi-
cient sets S1 = {1, 2, 3, 5, 7, 9} and S2 = {1, 2, 3, 5, 8, 13}.
The extended DBNS expansion with S1 can be written
as 5 · 21133 − 7 · 2633 − 5 · 2132 − 2 · 2130. Assuming that
[2]P, [5]P, and [7]P are precomputed, it is possible to ob-
tain [264290]P as [2]([32]([253]([25][5]P − [7]P )− [5]P )−
[2]P ) with 11 doublings, 3 triplings, and 3 additions. On
the other hand, the extended DBNS expansion with S2
can be written as 13·2834−8·2334−8·2231+2·2030. As-
suming that [2]P, [8]P, and [13]P are precomputed, one
can obtain [264290]P as [2231]([2133]([25][13]P − [8]P )−
[8]P ) + [2]P with 8 doublings, 4 triplings, and 3 addi-
tions. The latter expansion can be computed faster.
To compute extended double-base chains, we used the

greedy type algorithm in [2] (Algorithm 1). In this algo-
rithm, one chooses the best approximation d12

a13b1 of
given integer n first. Total costs for single-scalar mul-
tiplication using extended DBNS depend on a1, b1, and
the length of the chain. If these values can be reduced,
it is possible to compute with less costs. Let d1 be the
largest number in S. Other di’s are chosen in S properly.
Then, we can reduce a1 and b1 as in the above example.
We carried out the experiments and showed the results
in the next section.
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Table 1. Total multiplication counts for each curve shape.

Shape l (bit) M (New results) M (Bernstein) a0
Proj 160 1142.08706 1149.18034 156
Proj 200 1392.19286 1402.05392 196
Proj 256 1739.61144 1749.63448 252
Proj 300 2012.27620 2022.30108 296

Proj 400 2653.80934 2682.76172 396
Proj 500 3273.85562 3302.77824 496

Inv 160 1126.75536 1134.59694 156
Inv 200 1376.36036 1386.94202 196

Inv 256 1723.79004 1734.50618 252
Inv 300 1996.43160 2007.16798 296
Inv 400 2633.84604 2663.45662 396
Inv 500 3253.88962 3283.49154 496

Ext 160 1272.09880 1283.00072 156
Ext 200 1560.78106 1574.78950 196
Ext 256 1964.27612 1978.37394 252
Ext 300 2280.83532 2295.00180 296

Ext 400 3011.23480 3047.20314 396
Ext 500 3731.27792 3767.28818 496

Table 2. Choices of the sets.

l (bit) #S S (New results) S (Bernstein)

160 8 {1, 2, 3, 5, 8, . . . , 34} {1, 2, 3, 5, 7, . . . , 13}
200 9 {1, 2, 3, 5, 8, . . . , 55} {1, 2, 3, 5, 7, . . . , 15}
256 9 {1, 2, 3, 5, 8, . . . , 55} {1, 2, 3, 5, 7, . . . , 15}
300 9 {1, 2, 3, 5, 8, . . . , 55} {1, 2, 3, 5, 7, . . . , 15}
400 14 {1, 2, 3, 5, 8, . . . , 610} {1, 2, 3, 5, 7, . . . , 25}
500 14 {1, 2, 3, 5, 8, . . . , 610} {1, 2, 3, 5, 7, . . . , 25}

4. Experiments and results

In this section, we explain our experiments and sum-
marize our results. Our experiments are based on what
Bernstain et al. carried out in [3]. We generated 10000
uniform random integers n ∈ {0, 1, . . . , 2l − 1}. Here, l’s
are several bit sizes, namely, 160, 200, 256, 300, 400, and
500. Next, we converted each integer into a double-base
chain as specified by a0 and S. Note that we can obtain
b0 by calculating ⌈(log2 n − a0) log2 3⌉. In our experi-
ments, we chose S optimized by them. In addition, we
included the sets {F2, F3, . . . }. Finally, we checked that
the constructed chain indeed computed n starting the
chain from 1, and counted the number of triplings, dou-
blings, and additions for those 10000 choices of n. Our
experiments included the three curve shapes: Projective
twisted Edwards(Proj); Inverted twisted Edwards(Inv);
and Extended twisted Edwards(Ext). We follow the
standard practice of counting S = 0.8M, and disregard-
ing other field operations. We included the multiplica-
tion counts for the initial computation of [c]P for each
c ∈ S. The results of the experiments are presented as
tables. Table 1 shows total multiplication counts for each
curve shape and each l. We describe our choices of the
coefficient sets for each l in Table 2. The multiplication
counts can be reduced approximately 1% for each curve
shape and each l rather than that of Bernstein et al. For
larger l, our sets can be more efficient. Extended twisted
Edwards coordinates are slower than the other coordi-
nates in our experiment. That is because the number
of doublings occupies most of the multiplication counts.
The costs of the doubling for extended coordinates are
larger than those for projective coordinates and inverted
coordinates.

5. Conclusion

In this paper, we showed explicit tripling formulas for
twisted Edwards curves. We also proposed a new co-
efficient set for extended DBNS chains, and optimized
single-scalar multiplication for twisted Edwards curves.
Future works are as follows:

• analyzing mixed coordinates introduced in [5] for
twisted Edwards curves,

• optimizing single-scalar multiplication for other el-
liptic curve shapes by using our sets,

• speeding up the algorithm which makes up extended
DBNS chains.
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