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Abstract

In the studies of mathematical statistics, we often consider discrete distributions and their
corresponding stochastic processes. Especially, probabilistic limit theorems of them may give
us some progress in mathematical finance. There exist not so many properties of discrete
distributions on Rd. In this paper, we treat multiple zeta functions as to define several forms
of discrete distributions on Rd including those with infinitely many mass points. Our purpose
is to obtain new methods in the relations between multiple infinite series and high dimen-
sional integral calculus, which can provide us more opportunities to handle high dimensional
phenomenon.
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1. Infinitely divisible distributions

Infinitely divisible distributions are known as one of
the most important class of distributions in probability
theory. They are the marginal distributions of stochas-
tic processes having independent and stationary incre-
ments such as Brownian motion and Poisson processes.
In 1930’s, such stochastic processes were well-studied by
P. Lévy and now we usually call them Lévy processes.
They often appear in mathematical finance as standard
stochastic processes. We can find the detail of Lévy pro-
cesses in Sato [1].
In this section, we mention some known properties of

infinitely divisible distributions.

Definition 1 (Infinitely divisible distribution) A
probability measure µ on Rd is infinitely divisible if, for
any positive integer n, there is a probability measure µn

on Rd such that

µ = µn∗
n ,

where µn∗
n is the n-fold convolution of µn.

Example 2 Normal, degenerate and Poisson distribu-
tions are infinitely divisible.

Denote by I(Rd) the class of all infinitely divisible

distributions on Rd. Let µ̂(⃗t) :=
∫
Rd e

i⟨t⃗,x⟩µ(dx), t⃗ ∈ Rd,
be the characteristic function of a distribution µ, where
⟨·, ·⟩ is the standard inner product in Rd. We also write
a ∧ b = min{a, b}.
The following is well-known.

Proposition 3 (Lévy–Khintchine representation
(see, e.g. Sato [1])) (i) If µ ∈ I(Rd), then

µ̂(⃗t) = exp

(
− 1

2
⟨⃗t, At⃗⟩+ i⟨γ, t⃗⟩

+

∫
Rd

(
ei⟨t⃗,x⟩ − 1− i⟨⃗t, x⟩

1 + |x|2

)
ν(dx)

)
, t⃗ ∈ Rd,

(1.1)

where A is a symmetric nonnegative-definite d × d ma-
trix, ν is a measure on Rd satisfying

ν({0}) = 0 and

∫
Rd

(
|x|2 ∧ 1

)
ν(dx) < ∞, (1.2)

and γ ∈ Rd.
(ii) The representation of µ̂ in (i) by A, ν, and γ is

unique.
(iii) Conversely, if A is a symmetric nonnegative-

definite d×d matrix, ν is a measure satisfying (1.2), and
γ ∈ Rd, then there exists an infinitely divisible distribu-
tion µ whose characteristic function is given by (1.1).

The measure ν is called the Lévy measure and it gen-
erates a jump type Lévy process. The following is also
known as one of the most important classes of infinitely
divisible distributions.

Definition 4 (Compound Poisson distribution)
A distribution µ on Rd is called compound Poisson if,
for some c > 0 and some probability measure ρ on Rd

with ρ({0}) = 0,

µ̂(⃗t) = exp
(
c[ρ̂( t⃗ )− 1]

)
, t⃗ ∈ Rd.

Here the measure ρ is the Lévy measure of the com-
pound Poisson distribution µ and is finite. The Poisson
distribution is a special case where d = 1 and ρ = δ1,
where δx is a delta measure at x.

Remark 5 We have to note that any infinitely divis-
ible distribution can be expressed as the weak limit of a
certain sequence of compound Poisson distributions.
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2. Zeta distributions

In one dimensional case, there exists a class of dis-
crete distribution generated by the Riemann zeta func-
tion. Our research is focused on this class and expanded
to obtain several exact expressions of discrete multidi-
mensional distributions with Lévy measures if they have.
We rarely see that both of the discrete distributions and
Lévy measures on Rd are computable in mathematical
statistics as well as such relations between multiple se-
ries and high dimensional measure theories even in pure
mathematics.
First, we introduce the Riemann zeta function and

distribution. We can find the basic properties of zeta
functions in Apostol [2].

Definition 6 (Riemann zeta function) The Rie-
mann zeta function is a function of a complex variable
s = σ + it ∈ C, for σ > 1, t ∈ R given by

ζ(s) :=
∞∑

n=1

1

ns
.

The Riemann zeta function converges absolutely in
the region σ > 1. In this region of absolutely conver-
gence,wehave the followingwell-knowndistribution onR.
Definition 7 (Riemann zeta distribution) For
each σ > 1, a probability measure µσ on R is called a
Riemann zeta distribution, if

µσ ({− log n}) = n−σ

ζ(σ)
, n ∈ N.

Then its characteristic function fσ can be written as
follows:

fσ(t) =

∫
R
eitxµσ(dx) =

ζ(σ + it)

ζ(σ)
, t ∈ R.

This class of distribution is first introduced in Jessen
and Wintner [3] without normalization for an example
in the studies of infinitely many times convolutions. As
a probability distribution, it is first appeared in Khint-
chine [4].

Proposition 8 (See, e.g. Gnedenko and Kol-
mogorov [5]) The characteristic function fσ(t) is a
compound Poisson with a finite Lévy measure Nσ on R:

log fσ(t) =

∫ ∞

0

(exp(−itx)− 1)Nσ(dx),

where

Nσ(dx) =
∑
p∈P

∞∑
r=1

p−rσ

r
δr log p(dx).

This proposition shows that the Riemann zeta func-
tion is treatable in the theory of Lévy processes as some
other well-known functions. Further properties of this
class is also studied in Hu and Lin [6].
The Riemann zeta function is variously extended such

as Hurwitz or Barnes types. (See, e.g. Apostol [2] in
detail.) Also, several generalized zeta distributions are
introduced but most of them are not infinitely divisible.
The cases having the infinite divisibility are the following.
A special case of Hurwitz zeta function generates a

compound Poisson distribution on R which is given in

Hu and Lin [7].
Other cases are given by using multivariable zeta func-

tions and their corresponding distributions are on Rd.
Aoyama and Nakamura [8] introduced multidimensional
Shintani zeta functions which are generalized to be mul-
tivariable and multiple infinite series as in the following.

Definition 9 (Multidimensional Shintani zeta
function (Aoyama and Nakamura [8])) Let
d,m, r ∈ N, s⃗ ∈ Cd and (n1, . . . , nr) ∈ Zr

≥0. For λlj,

uj > 0, c⃗l ∈ Rd, where 1 ≤ j ≤ r and 1 ≤ l ≤ m, and
a function θ(n1, . . . , nr) ∈ C satisfying |θ(n1, . . . , nr)| =
O((n1 + · · ·+ nr)

ε), for any ε > 0, we define a multidi-
mensional Shintani zeta function ZS(s⃗) given by

∞∑
n1,...,nr=0

θ(n1, . . . , nr)∏m
l=1(

∑r
j=1 λlj(nj + uj))⟨c⃗l,s⃗⟩

.

We call the function θ(n1, . . . , nr) a generalized
Dirichlet character of the multidimensional Shintani zeta
function and write ⟨c⃗, s⃗⟩ := ⟨c⃗, σ⃗⟩ + i⟨c⃗, t⃗⟩ for c⃗ ∈ Rd

and s⃗ ∈ Cd, where σ⃗, t⃗ ∈ Rd and s⃗ = σ⃗ + i⃗t. The series
ZS(s⃗) converges absolutely in the region min1≤l≤m⟨c⃗l, σ⃗⟩
> r/m (see, Aoyama and Nakamura [8]), which we de-
note by DS. Suppose that θ(n1, . . . , nr) is non-negative
or non-positive definite, then we can define the following
class of distribution on Rd.

Definition 10 (Multidimensional Shintani zeta
distribution (Aoyama and Nakamura [8])) For
each σ⃗ ∈ DS, a probability measure µσ⃗ on Rd is called
a multidimensional Shintani zeta distribution, if for all
(n1, . . . , nr) ∈ Zr

≥0,

µσ⃗

({
−

m∑
l=1

cl1 log

(
r∑

k=1

λlk(nk + uk)

)
,

. . . ,−
m∑
l=1

cld log

(
r∑

k=1

λlk(nk + uk)

)})

=
θ(n1, . . . , nr)

ZS(σ⃗)

m∏
l=1

(
r∑

k=1

λlk(nk + uk)

)−⟨c⃗l,σ⃗⟩

.

Then its characteristic function fσ⃗ is given by

fσ⃗ (⃗t) :=

∫
Rd

ei ⟨t⃗,x⟩µσ⃗(dx) =
ZS(σ⃗ + i⃗t)

ZS(σ⃗)
, t⃗ ∈ Rd,

which can be regarded as a generalization of the Rie-
mann zeta distribution.

Remark 11 This class contains both infinitely divisi-
ble and non infinitely divisible distributions on Rd. By
applying Euler products, some simple examples of com-
pound Poisson case on R2 and generalized cases on Rd

are given in [9] and [10], respectively.

3. Relation between distributions and

characters

Many kinds of discrete distributions can be repre-
sented in the sense of multidimensional Shintani zeta
functions by choosing suitable characters, and so their
characteristic functions can be written by multiple infi-
nite series. In this section, we pick up the multinomial
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distribution which is well-known as a multidimensional
discrete one, and show the relation with the character.

3.1 Main result 1 (A character corresponding to a
multinomial distribution)

Fix N ∈ N. For each 1 ≤ l, k ≤ m, let ul = 1, λll = 1,
λlk = 0, (l ̸= k). We also take σ⃗ ∈ DS, c⃗l = (clj)

d
j=1 ∈

Rd, ϕ(l) ∈ R and j(1), . . . , j(m) ∈ N\{1} with relatively
prime each other. Define a character by

θN (n1, . . . , nm)

:=



N !
m∏
l=1

(ϕ(l))kl

kl !(
nl + 1 = (j(l))kl ,

m∑
l=1

kl = N

)
,

0 (otherwise).

Then, for each s⃗ = σ⃗ + i⃗t ∈ Cd, t⃗ ∈ Rd,

ZS(s⃗) =
∑

k1+···+km=N

N !

m∏
l=1

(ϕ(l))kl(j(l)−⟨c⃗l,s⃗⟩)kl

kl !

=

(
m∑
l=1

ϕ(l)(j(l))−⟨c⃗l,s⃗⟩

)N

,

fσ⃗ (⃗t) :=
ZS(σ⃗ + i⃗t)

ZS(σ⃗)
=

(
m∑
l=1

q(l)ei⟨x⃗l ,⃗t⟩

)N

,

where

q(l) :=
ϕ(l)(j(l))−⟨c⃗l,σ⃗⟩∑m
l=1 ϕ(l)(j(l))

−⟨c⃗l,σ⃗⟩
,

x⃗l := (xlk)
d
k=1, xlk := −clk log j(l).

If ϕ(1), . . . , ϕ(m) have the same sign, then the char-
acter θN is non-negative or non-positive definite, and so
that fσ⃗ is a characteristic function of a Shintani zeta
distribution. That is, it is the characteristic function of
a random variable Xσ⃗ defined by

Pr

(
Xσ⃗ =

(
m∑
l=1

xl1nl, . . . ,
m∑
l=1

xldnl

))

= N !
m∏
l=1

(q(l))nl

nl!
, when

m∑
l=1

nl = N.

Especially, if m = d and x⃗1, . . . , x⃗d are the standard
basis of Rd, then Xσ⃗ belongs to a multinomial distribu-
tion.
Since multinomial distributions are the distributions

which have densities at most finitely many points, their
characteristic functions are also multiple finite sum.
However, multidimensional Shintani zeta distributions
whose characteristic functions defined by multiple infi-
nite series may have densities at countably many points.
In the following, we give an example of them and men-
tion whether it is infinitely divisible or not.

3.2 Main result 2 (A character corresponding to a com-
pound Poisson distribution on Rd)

We use the settings in Main result 1. For any non-
negative integer valued random variable T , define a char-

acter

θT (n1, . . . , nm)

:=

∞∑
N=0

Pr(T = N)
θN (n1, . . . , nm)

(
∑m

l=1 ϕ(l)(j(l))
−⟨c⃗l,σ⃗⟩)N

.

Then the characteristic function Fσ⃗,T of a multidimen-
sional Shintani zeta distribution with a character θT has
the form of

Fσ⃗,T (⃗t)

=
∞∑

N=0

Pr(T = N)

(
∑m

l=1 ϕ(l)(j(l))
−⟨c⃗l,σ⃗⟩)N

×
∞∑

n1,...,nm=0

θN (n1, . . . , nm)∏m
l=1(

∑m
k=1(λlk(nk + uk))⟨c⃗l,σ⃗+i⃗t⟩

=
∞∑

N=0

Pr(T = N)

(
∑m

l=1 ϕ(l)(j(l))
−⟨c⃗l,σ⃗⟩)N

×

(
m∑
l=1

ϕ(l)(j(l))−⟨c⃗l,σ⃗+i⃗t⟩

)N

=
∞∑

N=0

Pr(T = N)

(
m∑
l=1

q(l) ei⟨x⃗l ,⃗t⟩

)N

, t⃗ ∈ Rd.

Especially, if T belongs to a Poisson distribution with
mean λ, then

Fσ⃗ (⃗t) =
∞∑

N=0

λN

N !
e−λ

(
m∑
l=1

q(l) ei⟨x⃗l ,⃗t⟩

)N

= exp

(
λ

(
m∑
l=1

q(l) ei⟨x⃗l ,⃗t⟩ − 1

))
, t⃗ ∈ Rd.

This is the characteristic function of a compound Pois-
son distribution with a finite Lévy measure Nσ⃗ on Rd

given by

Nσ⃗(dx) = λ

m∑
l=1

q(l)δx⃗l
(dx).

Remark 12 In mathematical finance, models caused
by some one-dimensional Lévy process are studied. Now
we have discrete infinitely divisible distributions on Rd

with finite Lévy measures, which make us possible to sim-
ulate some models associating with Rd-valued Lévy pro-
cesses.

4. Conditions to be characteristic func-

tions

Non-negative or non-positive definiteness of charac-
ters are not necessary conditions for distributions to
be defined by multidimensional Shintani zeta functions.
Therefore, now we consider the case when they are not
non-negative nor non-positive definite. We have the fol-
lowing lemma which holds under the settings in Main
result 1 and 2.

Lemma 13 Suppose that Rd-valued vectors c⃗1, . . . , c⃗m
are linearly independent over R or c⃗1 = · · · = c⃗m ( ̸= 0).
If ϕ(1), . . . , ϕ(m) do not have the same sign, then there
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exist Rd-valued vectors t⃗1, t⃗2 such that

|fσ⃗ (⃗t1)| > 1, |Fσ⃗ (⃗t2)| > 1.

It is known that characteristic functions µ̂ of any prob-
ability measures µ on Rd satisfies |µ̂(⃗t)| ≤ 1, t⃗ ∈ Rd.
Hence, if normalized functions fσ⃗ (⃗t) and Fσ⃗ (⃗t) have vec-
tors t⃗1, t⃗2 such that |fσ⃗ (⃗t1)| > 1, |Fσ⃗ (⃗t2)| > 1 holds, then
they can not be characteristic functions. Now we have
the following result.

Theorem 14 (A necessary and sufficient condi-
tion to be characteristic functions) Suppose that
Rd-valued vectors c⃗1, . . . , c⃗m are linearly independent
over R or c⃗1 = · · · = c⃗m (̸= 0). Then, fσ⃗, Fσ⃗ are charac-
teristic functions if and only if ϕ(1), . . . , ϕ(m) have the
same sign.

We give the proof of Lemma 13 of the case of fσ⃗ when
c⃗1 = · · · = c⃗m ( ̸= 0) as in the same way as in Aoyama
and Nakamura [9,10]. The following proposition plays a
key role in its proof.

Proposition 15 (Kronecker’s approximation the-
orem (see, e.g. [11])) If r1, . . . , rn are arbitrary real
numbers, if real numbers θ1, . . . , θn are linearly indepen-
dent over the rationals, and if ϵ > 0 is arbitrary, then
there exist a real number t and integers h1, . . . , hn such
that

|tθk − hk − rk| < ϵ, 1 ≤ k ≤ n.

Proof of Lemma 13 Since ϕ(1), . . . , ϕ(m) do not
have the same sign, there exists l0 such that q(l0) < 0.
Put

L :=
∑
l ̸=l0

q(l)− q(l0) >
m∑
l=1

q(l) = 1,

and take n0 ∈ N and ϵ > 0 such that L− ϵ > 1.
Define

θl =
log j(l)

2π
(1 ≤ l ≤ m).

Then, θ1, . . . , θm are linearly independent over the ra-
tionals. Therefore, the Kronecker’s approximation theo-
rem shows that there exists T0 ∈ R such that

|ei2πT0θl0 + 1| < ϵ

(
∑m

l=1 |q(l)|)
,

|ei2πT0θl − 1| < ϵ

(
∑m

l=1 |q(l)|)
(l ̸= l0).

Thus, we have∣∣∣∣∣
m∑
l=1

ei2πT0θl − L

∣∣∣∣∣
≤
∑
l ̸=l0

|q(l)||ei2πT0θl − 1|+ |q(l0)||ei2πT0θl0 + 1| < ϵ

and that is ∣∣∣∣∣Re

(
m∑
l=1

q(l)ei2πT0θl − L

)∣∣∣∣∣
≤

∣∣∣∣∣
(

m∑
l=1

q(l)ei2πT0θl − L

)∣∣∣∣∣ < ϵ.

Take t⃗1 ∈ Rd such that T0 = ⟨c⃗1, t⃗1⟩. Then

Re

(
m∑
l=1

q(l)ei⟨x⃗l ,⃗t1⟩

)

= Re

(
m∑
l=1

q(l)ei2πT0θl

)
> L− ϵ > 1.

Hence

|fσ⃗ (⃗t1)| =

∣∣∣∣∣
m∑
l=1

q(l)ei⟨x⃗l ,⃗t1⟩

∣∣∣∣∣
N

> 1.

(QED)

The rest of the proofs and further results are given in
Aoyama and Yoshikawa [12].
By following our story, we can see that the characters

seem to be an important key of multidimensional Shin-
tani zeta functions in view of defining distributions. We
still need new facts and methods of them as to make
things in stochastic models clearer and more useful.
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