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Abstract

In 1948, Ward defined elliptic divisibility sequences satisfying a certain recurrence relation.
An elliptic divisibility sequence arises from any choice of elliptic curve and initial point on that
curve. In this paper, we define a hard problem in the theory of elliptic divisibility sequences
(EDS-DH problem), which is computationally equivalent to the elliptic curve Diffie-Hellman
problem.
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1. Introduction

In 1948, Ward defined the concept of an elliptic divis-
ibility sequence (EDS for short) [1]. This is a sequence
of integers, satisfying a certain divisibility property and
a non-linear recurrence relation, which is related to a
division polynomial. In 2008, Lauter and Stange defined
some hard problems in the theory of EDSs, each of which
is computationally equivalent to the elliptic curve dis-
crete logarithm problem (ECDLP) [2]. But, they did
not consider the elliptic curve Diffie-Hellman problem
(ECDHP). In this paper, we define a hard problem
(EDS-DH problem) for EDSs, which is computationally
equivalent to the ECDHP. In Section 2, we begin with
an introduction to EDSs and how to calculate general
terms of EDSs. In Section 3, we introduce the ECDHP,
and we define EDS-DH problem. In Section 4, we ex-
plain the equivalence of ECDHP and EDS-DH problem.
Our conclusion is presented in Section 5.

2. Elliptic divisibility sequences

In this section, we briefly review EDSs according to
[2]. See [1–3] for the detail.

2.1 Elliptic divisibility sequences

Let us begin the definition of an EDS.

Definition 1 ([2]) An EDS (W (n)) is a sequence in
a field K satisfying: W (m + n)W (m − n) = W (m +
1)W (m−1)W (n)2−W (n+1)W (n−1)W (m)2 (∀m,n ∈
Z).

EDSs satisfy a relation which division polynomials of
elliptic curves have. We now need two following theo-
rems.

Theorem 2 ([4]) If ((W (n)) is a non-trivial EDS,
then W (0) = 0K , W (1) = ±1K , and W (−n) = −W (n)
(∀n ∈ Z).

This theorem means that we only need to consider
positive subscript terms of EDS with W (1) = 1K , where

1K denotes the unit element for multiplication and 0K
denotes the unit element for addition in the field K; we
assume this throughout this paper.

Theorem 3 ([4]) If the initial five terms W (0), W (1),
W (2), W (3), W (4) of an EDS (W (n)) are known, then
the whole sequence is well defined.

Since we always have W (0) = 0K ,W (1) = 1K , this
is equivalent to knowing the three terms W (2), W (3),
W (4).

2.2 Calculating a general term
It is then important to know how to calculate a

general term of an EDS defined by the three terms
W (2),W (3),W (4). For this purpose, we use the recur-
rence relations below.

Definition 4 By Definition 1, we have the recurrence
relations for all k ∈ Z:

• W (2k+1)W (1) = W (k+2)W (k)3−W (k−1)W (k+
1)3.

• W (2k)W (2) = W (k)(W (k + 2)W (k − 1)2 −W (k −
2)W (k + 1)2).

These formulae are called the doubling formulae.

Let Ψn denote the n-th division polynomial of an ellip-
tic curve E over a field K. The sequence WE,P : Z → K
of the form WE,P (n) = Ψn(P ) for some fixed point
P ∈ E(K) is an elliptic divisibility sequence. Ward
showed that almost all elliptic divisibility sequences arise
in this way for the case K = Q. This relationship is the
basis of our work here.
In this paper, we assume naive arithmetic in Fq,

namely, we bound the time to do basic Fq operations
by O((log q)2) for simplicity.

Theorem 5 ([4, Theorem 3.4.1]) Let E be an ellip-
tic curve over K = Fq, and P ∈ E(K) a point of order
not less than 4. Given a value t, the term WE,P (t) in
the elliptic divisibility sequence associated to E,P can
be calculated in O((log t)(log q)2) time.
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3. ECDHP and EDS-DH problem

In this section, we introduce the ECDHP and define
the EDS-DH problem.

Problem 6 Let E be an elliptic curve over a finite
field K. Suppose there are points P, [a]P, [b]P ∈ E(K)
(a, b ∈ Z). Determine [ab]P ∈ E(K).

This problem is called the elliptic curve Diffie-Hellman
problem (ECDHP). In order to define the EDS-DH prob-
lem, we need the following theorem.

Theorem 7 ([2]) Let K be a finite field of q elements,
and E an elliptic curve defined over K. For all points
P ∈ E(K) of order relatively prime to q− 1 and greater
than 3,define:

ϕ(P ) =

(
WE,P (q − 1)

WE,P (q − 1 + ord(P ))

) 1
ord(P )2

.

For a point P of order relatively prime to q − 1 and
greater than 3, the sequence ϕ([n]P ) is an EDS. Specifi-
cally:

ϕ([n]P ) = ϕ(P )
n2

WE,P (n) (∀n ∈ Z).

In light of this theorem we will use the following conve-
nient notation:

W̃E,P (n) =
ϕ([n]P )

ϕ(P )
.

W̃E,P (n) can be calculated as a function of the point
[n]P on the curve without knowledge of n.

Problem 8 Let K be a finite field of q elements, and
E an elliptic curve defined over K. Let P ∈ E(K) be a
point of order relatively prime to q−1 and greater than 3.
Suppose there are points P, [a]P, [b]P ∈ E(K) (a, b ∈ Z).

Determine W̃E,P (ab) ∈ K.

We call this problem the EDS-DH problem.

4. Equivalence of two hard problems

In this section, we prove the following theorem.

Theorem 9 Let E be an elliptic curve over a finite field
K = Fq of characteristic ̸= 2. For all points P ∈ E(K)
of order relatively prime to q− 1 and greater than 3, the
ECDHP is computationally equivalent to the EDS-DH
problem.

Proof ECDHP =⇒ EDS-DH problem:
For simplicity and cryptographical view point, we only

consider the case the order of P is prime. Setting n = ab
in the equation of Theorem 7, we obtain an expression:

W̃E,P (ab)

=
1

ϕ(P )

(
WE,[ab]P (q − 1)

WE,[ab]P (q − 1 + ord([ab]P ))

) 1
ord([ab]P )2

.

Using Theorem 5 to calculate the ratio of terms in-
side the parentheses takes log (q − 1 + ord([ab]P )) +
log (q − 1) steps. Since ord([ab]P ) is on the order of q,
this is O((log q)3) time at worst. The other necessary
operation is to find the inverse of ord([ab]P )2 modulo

q− 1, and to raise to that exponent. Both these are also
O(log q) finite field operations.
EDS-DH problem =⇒ ECDHP:
See [2, Lemma 1] for the following identity:

WE,P (n− 1)WE,P (n+ 1)

WE,P (n)
2 = x(P )− x([n]P ).

Set n = ab in this equation, and apply Theorem 7:

W̃E,P (ab− 1)W̃E,P (ab+ 1)

W̃E,P (ab)
2 = ϕ(P )

2
(x(P )− x([ab]P )).

The term W̃E,P (ab) can be calculated from the assump-
tion that the EDS-DH problem is solvable. With knowl-
edge of the product W̃E,P (ab− 1)W̃E,P (ab+ 1), the x-
coordinate of [ab]P , x([ab]P ), can be calculated without
requiring knowledge of [ab]P .

The sequence W̃E,P satisfies the recurrence instance:

W̃E,P (i + j)W̃E,P (i − j) = W̃E,P (i + 1)W̃E,P (i −
1)W̃E,P (j)

2 − W̃E,P (j+1)W̃E,P (j− 1)W̃E,P (i)
2 (∀i, j ∈

Z).
Setting i = ab and j = a in this equation gives:

W̃E,P (a(b+1))W̃E,P (a(b−1)) = W̃E,P (ab+1)W̃E,P (ab−
1)W̃E,P (a)

2 − W̃E,P (a+ 1)W̃E,P (a− 1)W̃E,P (ab)
2.

All of these terms can be calculated by applying the
assumption that the EDS-DH problem is solvable except
for W̃E,P (ab+1)W̃E,P (ab− 1). However, compare these
terms with the recurrence relation to determine this un-
known term. Also determine x([ab]P ) in this manner.
We can calculate the corresponding possible values for y
in probabilistic time O((log q)4) [2, Theorem 9]. To de-
termine which of the two points with this x-coordinate is
actually [ab]P , first take one of the two candidate points,
and proceed on the assumption that it is [ab]P . Using

EDS-DH problem oracle, calculate W̃E,P (ab) from the

three points P, [a]P, and [b]P . Also calculate W̃E,P (ab)
from P and [ab]P by Theorem 7. Then, if the two values
are equal, our assumption about the point we chose is
correct. If the two values are not equal, then the point
we chose was incorrect, and the other one is the point
[ab]P we seek.

(QED)

5. Conclusion

We defined a hard problem in the theory of EDSs
(EDS-DH problem), which is computationally equivalent
to the ECDHP. A future work is to propose some cryp-
tographic schemes based on our proposed hard problem.
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