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Abstract

The security of the optimal Ate pairing using the BN curves is based on the hardness of
the DLP over GF(p12). At CRYPTO 2006, Joux et al. proposed the number field sieve over
GF(pn), but the number field sieve needs multi-dimensional sieving. In this paper, we deal
with the multi-dimensional sieving, and discuss its parameter sizes such as the dimension of
sieving and the size of the sieving region from some experiments of the multi-dimensional
sieving. Using efficient parameters, we have solved the DLP over GF(p12) of 203 bits in about
43 hours using a PC of 16 CPU cores.
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1. Introduction

Pairing-based cryptography has attracted us due to
novel cryptographic protocols such as ID-based cryptog-
raphy, functional encryption, etc. Many efficient imple-
mentations of pairing have been reported, and one of the
most efficient algorithms for computing pairing is the op-
timal Ate pairing [1] using the BN curves [2]. The secu-
rity of pairing-based cryptography using the BN curves
is based on the hardness of the discrete logarithm prob-
lem (DLP) over finite fields GF(p12).
The asymptotically fastest algorithm for solving the

DLP over prime fields GF(p) is the number field sieve
[3]. At CRYPTO 2006, Joux et al. extended the number
field sieve to the case of extension fields GF(pn) of de-
gree n and characteristic p [4]. The complexity of solving
the DLP over finite fields GF(p12) of 3072 bits by the
number field sieve is estimated to be 2128 [2]. There are
two experimental reports on the implementation of the
number field sieve over extension fields GF(pn) of de-
grees n = 3 [4] and n = 6 [5, 6]. However, to the best of
our knowledge, there is no experimental report on the
hardness of the DLP over finite fields GF(p12) by the
number field sieve. In order to correctly estimate the se-
curity of the pairing-based cryptography, we need some
experimental evaluations of number field sieve over finite
field GF(p12).
The number field sieve over extension field GF(pn)

has a substantially different sieving step from that over
prime field GF(p). There are two sieving algorithms,
called the line sieve and the lattice sieve [7]. The large-
scale implementation of the number field sieve over
prime fields GF(p) deploys the lattice sieve of dimen-

sion two, but we have to construct the lattice sieve of
dimension higher than two for the number field sieve
over extension fields GF(p12). The currently known re-
ports on the multi-dimensional sieving have discussed
only the case of dimension three [5, 6].
In this paper, we propose the lattice sieving of dimen-

sion higher than two for the number field sieve over ex-
tension fields GF(p12) by naturally extending the lattice
sieve of dimension two. We implemented the proposed
multi-dimensional lattice sieve over an extension field
GF(p12) of 203 bits, and we show some experimental
data for accelerating the number field sieve by choosing
suitable dimensions and sizes of the sieving region. Con-
sequently, we have solved the DLP over the extension
field GF(p12) of 203 bits by the number field sieve using
a PC of 16 CPU cores in about 43 hours.

2. Number field sieve over GF(pn) [4]

2.1 DLP over GF(pn)
We denote by GF(pn)∗ the multiplicative group of a

finite field of cardinality pn, where p is a prime number
and n is an extension degree. The DLP over a finite field
GF(pn) tries to find the non-negative smallest integer
x that satisfies γx = δ for given δ, γ in GF(pn)∗. This
discrete logarithm x is written as logγ δ in this paper.

2.2 Polynomial selection
We generate two irreducible polynomials f1, f2 ∈

Z[X]\{0} that satisfy the following conditions: f1 ̸= f2,
deg f1 = n, f1 is irreducible in GF(p)[X], f1 | f2 mod p.
From the conditions, there exists v ∈ GF(pn) such that
f1(v) = f2(v) = 0 in GF(pn). Let α1 and α2 ∈ C be
roots of f1(X) = 0 and f2(X) = 0, respectively. There
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are homomorphism maps ϕ1 : Z[α1] → GF(pn), α1 7→
v, ϕ2 : Z[α2] → GF(pn), α2 7→ v.

2.3 Searching relations
In the step of searching relations, we try to find many

relations of certain polynomials of degree t ≥ 1. Let
B1, B2 ∈ R>0 be smoothness bounds associated with
polynomials f1, f2 in Section 2.2. We define the factor
bases B1,B2 by

Bi = {(q, g) | q : prime, q ≤ Bi, g : irreducible monic

polynomial in GF(q)[X], g|fi mod q,

deg g ≤ t}.

In this paper, we represent a polynomial ha(X) =∑t
j=0 ajX

j ∈ Z[X] as a vector a = (a0, a1, . . . , at)
T ∈

Zt+1. For a given H = (H0, H1, . . . , Ht) ∈ Rt+1
>0 , we de-

fine a (t+ 1)-dimensional region Ha(H) as

Ha(H) ={(a0, a1, . . . , at)T ∈ Zt+1 |
|ai| ≤ Hi (0 ≤ i ≤ t), at ≥ 0}.

Here H and Ha are called a sieving interval and a siev-
ing region, respectively. Next, the norm of ha(αi) is de-
fined by N(ha(αi)) = |Res(ha, fi)|, where Res(ha, fi) is
the resultant of ha(X) and fi(X) for i = 1, 2. In the
step of searching relations, for the given sieving inter-
val H and the smoothness bound B1, B2, we try to find
a ∈ Zt+1 (called a hit tuple) that satisfies the follow-
ing conditions: N(ha(α1)) is B1-smooth, N(ha(α2)) is
B2-smooth, gcd(a0, a1, . . . , at) = 1, where an integer is
B-smooth if and only if its prime factors are at most
B. We denote by S the set of all hit tuples gathered in
searching relations. In order to solve the correct discrete
logarithm, the size of S is chosen as

♯S ≥ ♯B1 + ♯B2 + 2n. (1)

From ϕ1(ha(α1)) = ϕ2(ha(α2)), using a ∈ S and the
homomorphism maps in Section 2.2, we obtain relations
of discrete logarithms. Consequently, we can compute
the discrete logarithms of q ∈ Bi by solving the linear
equations obtained from the relations.

3. Searching relations by multi-

dimensional sieving

In the following, we describe the line sieve presented
by Zajac [6]. If q | N(ha(αi)) holds for a prime q < Bi

and i = 1, 2, then q | N(h(αi)) holds for any polynomial
h(X) = ha(X) + kq where k is any integer. From this
fact, we can search a hit tuple a divisible by q in the
sieving region without performing the division of inte-
gers. Similarly, for q = (q, g) ∈ Bi(i = 1, 2), we have the
property

g | ha mod q ⇒ qdeg g | N(ha(αi)). (2)

For ∀q = (q, g) ∈ Bi where i ∈ 1, 2 is fixed, we ac-
cumulate deg g log q in a variable L[a] if the sufficient
condition in (2) for (q, g) and a is satisfied. Then, we
can find a candidate of a ∈ Ha whose norm N(ha(αi))
is Bi-smooth by checking logN(ha(αi)) − L[a] is suffi-
ciently small.
Let Id be the identity matrix of size d × d. For ∀q =

(q, g) ∈ Bi(i = 1, 2) where g =
∑deg g

j=0 gjX
j , the set of all

polynomials in Z[X] of degree less than t+1 that satisfy
the sufficient condition in (2) is generated by the integer
linear combinations of the columns of the following (t+
1)× (t+ 1) matrix:

g0 0

qIdeg g g1
. . .

...
. . . g0

gdeg g g1

0
. . .

...
0 gdeg g


. (3)

Since g is a monic polynomial (see Section 2.3), we can
convert the i-th column (deg g+1 ≤ i ≤ t+1) columns of
this matrix (3) by integer linear combinations of columns
as follows:

Mq =

(
qIdeg g Tq

0 It−deg g+1

)
, (4)

where Tq is a deg g× (t−deg g+1) integer matrix. Con-
versely, for any c = (c0, c1, . . . , ct)

T ∈ Zt+1 the polyno-
mial vector a = Mq c satisfies the sufficient condition in
(2). Therefore, for the matrix Tq and c ∈ Zt+1, we can
represent Mq as follows:

(a0, a1, . . . , adeg g−1)
T

=q(c0, c1, . . . , cdeg g−1)
T+Tq(adeg g, adeg g+1, . . . , at)

T.
(5)

For Tq and (adeg g, adegg +1, . . . , at)
T ∈ Zt−degg +1, we

set (u0, u1, . . . , udeg g−1) = Tq (adeg g, adegg +1, . . . , at)
T.

Then, we can search a that satisfies the sufficient con-
dition in (2) by repeatedly adding u0, u1, . . . , udeg g−1

to q in the sieving region Ha for (u0, u1, . . . , udeg g−1,
adeg g, adeg g+1, . . . , at).

4. Proposed multi-dimensional lattice

sieve

The lattice sieve tries to find candidates of hit tuples
in the lattice whose elements are divisible by q ∈ Bi

(called special-q). For a special-q = (q, g) ∈ Bi, letMq be
the matrix of equation (4), and let MLLL

q be the matrix
generated by the LLL algorithm [8] from Mq.
In this paper, we call the search space of dimension

t+1 for hit tuple a ∈ Ha the a-space. On the other hand,
the (t+1)-dimensional lattice MLLL

q , which is generated

by MLLL
q c for c ∈ Zt+1, is called the c-space. Moreover,

for a sieving interval Hc ∈ R>0, we define the sieving
region over the c-space by

Hc(Hc) = {(c0, c1, . . . , ct)T ∈ Zt+1 |
|ci| ≤ Hc (0 ≤ i ≤ t), ct ≥ 0}.

The lattice sieve for the special-q searches candidates of
hit tuples in the sieving region Hc in the c-space.
Next, we construct the matrix Mr from an element

r = (r, h) ∈ Bi that is different from q in the factor
base. By the same method for generating Mq from q,
we can obtain equation (5) corresponding to Mr, and by
reducing vector r(c0, c1, . . . , cdeg h−1)

T modulo r, we can
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Fig. 1. Here VH is the size of the sieving region and VB is that
of the factor bases of the multi-dimensional lattice sieve for the
number field sieve over the extension field GF(p12) of 203 bits.

yield the following equation

(a0, a1, . . . , adeg h−1)
T

≡ Tr(adeg h, adeg h+1, . . . ,at)
T (mod r). (6)

Here, we decompose the (t+1)× (t+1) matrix MLLL
q

into the deg h×(t+1) matrix MLLL
q ,1 and the (t−deg h+

1)×(t+1) matrix MLLL
q ,2 as MLLL

q =
(

MLLL
q ,1

MLLL
q ,2

)
. The set of

all elements a divisible by q is represented by a = MLLL
q c

for c ∈ Zt+1, namely

(a0, a1, . . . , adeg h−1)
T = MLLL

q ,1 c, (7)

(adeg h, adeg h+1, . . . , at)
T = MLLL

q ,2 c. (8)

Therefore, from equations (6) and (8), we obtain

(MLLL
q ,1 − Tr MLLL

q ,2 ) c ≡ 0 (mod r). (9)

Next, let Mq ,r be the lattice generated by c from equa-
tion (9), namely Mq ,r is the kernel of the linear map
(MLLL

q ,1 −Tr MLLL
q ,2 ). Note that a = MLLL

q Mq ,r e for any
e = (e0, e1, . . . , et) ∈ Zt+1 satisfies the sufficient condi-
tion in (2) for both q and r. We can compute Mq ,r from
MLLL

q ,1 − Tr MLLL
q ,2 corresponding to equation (9).

5. How to select parameters t,H,B1, B2

In this section, we explain how to select the param-
eters of the lattice sieve in Section 2.3 for given two
polynomials f1, f2 in the polynomial selection in Section
2.2. In particular, we discuss suitable size of the dimen-
sion t + 1, the sieving interval H, and the smoothness
bounds B1, B2 that satisfy inequality (1) for the num-
ber field sieve over extension fields GF(p12). If we select
the parameters that accelerate both the searching re-
lation step and the linear algebra step simultaneously,
then the total running time of the number field sieve
becomes faster.

5.1 Selection of t

We denote by VH the size of the sieving region Ha(H),
namely VH = 2t

∏t
j=0 Hj . We extend the estimation of

the average norm in the two-dimensional lattice sieve
[9] to our multi-dimensional case. The average norm

Nave(ha(αi)) of the polynomial fi (i = 1, 2) in the lattice
sieve of dimension t+ 1 is evaluated by the formula

Nave(ha(αi)) =√∫Ht

0

∫Ht−1

−Ht−1
. . .

∫H0

−H0
(Res(ha, fi))2 da0 . . . dat

VH
.

Moreover, we approximate the probability ρ(x, y) that
the integers smaller than x are y-smooth to be
(logy x)

− logy x, and we assume that the total size of
the factor bases B1,B2 is VB = π(B1) + π(B2) where
π(Bi) is the number of primes smaller than or equal to
Bi (i = 1, 2). Let R be the number of hit tuples in the
sieving region Ha(H). Then R is calculated by

R = ρ(Nave(ha(α1)), B1)ρ(Nave(ha(α2)), B2)VH . (10)

Here, we have to find parameters that satisfy (1), namely
R > VB. Fig. 1 shows the minimal VB that satisfies
R > VB for VH in the lattice sieve of dimension t + 1
in the extension field GF(p12) of 203 bits. In order to
reduce the time of searching such a bound VB, we set
H0 = H1 = · · · = Ht and B1 = B2. From Fig. 1, we can
select smaller sizes VH of the sieving region and VB of the
factor bases that satisfy inequality (1) using dimension
8 for the extension field GF(p12) of 203 bits.

5.2 Selection of H and B1, B2

For fixed sizes VH of the sieving region and VB

of the factor bases, we first select a sieving in-
terval H and then smoothness bounds B1, B2. The
sieving interval H is chosen so that the probability
ρ(Nave(ha(α1)), B1)ρ(Nave(ha(α2)), B2) of a hit tuple in
equation (10) is maximum for fixed B1, B2 with B1 =
B2. For the above H, we then select B1, B2 so that the
number of hit tuples in equation (10) become maximum.

6. Our experiment on number field sieve

over GF(p12)

In this section, we report our experiment on solving
the DLP over the extension field GF(p12) of 203 bits
using the number field sieve in Section 2. We chose the
characteristic p = 122663 of 17 bits, namely the cardi-
nality of the extension field GF(p12) is

p12 =1160280479014934899128936416124 \

5260072909585140266491307794081.

The computational environment in our experiment is
as follows. We used one PC equipped with four CPUs
(Intel Xeon X7350 2.93 GHz; Core2 microarchitecture;
16 cores in total) and 64 GBytes of RAM. We utilize
gmp-5.0.5 for the arithmetic of multi-precision integers,
openmpi-1.6 for parallel implementation between pro-
cesses, pari-2.5.1 for the decomposition of ideals in the
number fields, and ntl-5.5.2 for the computation of lat-
tice reduction using the LLL algorithm. We use C++
with compiler gcc-4.7.1 on Linux OS (64 bits).
Table 1 presents the experimental data in our imple-

mentation and the previous ones of the number field
sieve over extension fields GF(pn).

– 55 –



JSIAM Letters Vol. 6 (2014) pp.53–56 Kenichiro Hayasaka et al.

Table 1. Comparison of known experiments of the number field sieve over extension field GF(pn).

Finite Field GF(p3) GF(p6) GF(p12)

Authors Joux et al. [4] Zajac [5] This paper

Year 2006 2008 2012

CPU Alpha (1.15GHz) × 8 Sempron (2.01GHz) × 8 Xeon (2.93GHz) × 4

Days 19 days 5 days 2 days

Bit Length 394 242 203

Sieving 2-dim. lattice sieve 3-dim. line sieve 7-dim. lattice sieve

6.1 Polynomial selection

In order to select two polynomials f1, f2 in Section 2.2,
we use the polynomial selection similar to the previous
experiments [4] and [5]. At first, an irreducible polyno-
mial f1 ∈ Z[X] of degree 12 with small coefficients is
chosen, and then we set f2 = f1 + p or f2 = f1 − p.
In this paper, Murphy’s α function [9] is used for

selecting a more suitable pair of polynomials f1, f2.
If Murphy’s α function fi (i = 1, 2) is smaller, then
the norm N(ha(αi)) (i = 1, 2) is expected to become
smoother, namely it is divisible by small prime divisors
with higher probability. The coefficients of the polyno-
mial f1 are searched in the range of ±10, and then
the sum of Murphy’s α of the following polynomials
f1, f2 is the smallest among the range of our search:
f1(X) = X12 − 3X4 + 9X3 − 9X2 − 9X + 2, f2(X) =
X12 − 3X4 + 9X3 − 9X2 − 9X − 122661.

6.2 Searching relations

In the estimation of Section 5.1, the suitable dimen-
sion of the lattice sieve for the extension field GF(p12)
of 203 bits was estimated to be eight. We perform some
experiments of the lattice sieve of dimensions 6, 7 and 8
for a random special-q with fixed VH and VB . From these
experiments, the lattice sieve of dimension 7 yields the
largest number of hit tuples for one special-q, and then
we select H = (443, 427, 304, 140, 70, 24, 9) and smooth-
ness bounds B1 = 114547 and, B2 = 148859.
We run the lattice sieve using the above polynomials

f1, f2 and the above parameters t,H,B1, B2. Our exper-
iment has generated 32,241 hit tuples in about 42 hours
using only 6 cores in our computational environment.
This is about 1.3 times larger than the sufficient num-
ber ♯B1 + ♯B2 + 2n of hit tuples.

6.3 Linear algebra

From the hit tuples in the searching relations, we
construct a matrix of linear equations modulo ℓ =
6118607636866573789 (63 bits) that is the maximum
prime divisor of p12 − 1. The size of the matrix is
32241× 24463, and it is shrunk to 16579× 15073 by the
filter process such as eliminating duplicated hit tuples.
Then, we solve it by the Lanczos method.
We found the solutions of the linear equations in about

25 minutes using the 16 cores in our computational en-
vironment, and the logarithms of q ∈ Bi was obtained.
Finally, we present an example of the discrete loga-

rithm. Let γ = x2 + x− 7 be a generator of GF(p12)∗ =
(GF(p)[X]/f1(X))∗. Let δ = x2− 5x+7 be a target ele-
ment of solving the discrete logarithm logγ δ in GF(p12).
Note that both γ and δ are B1-smooth. The above linear
equations modulo ℓ yields log δ = 3540036734608022534

and log γ = 3897708711757659596, and thus the discrete
logarithm logg δ in GF(p12) is computed by log δ/ log γ =
3161374319443177763 mod ℓ.

7. Conclusion

In this paper, we presented an implementation of the
number field sieve for solving the DLP over extension
fields GF(pn) that underpinned the security of pairing-
based cryptography. Especially, we proposed an imple-
mentation of the lattice sieve of dimension higher than
two. In our experiment, we discussed the dimension and
the size of the sieving region suitable for the number
field sieve over extension fields GF(p12). Finally, we have
solved the DLP over an extension field GF(p12) of 203
bits using a PC of 16 CPU core in about 43 hours.
In the future, we discuss how to select the sieving re-

gion for the DLP over extension fields GF(p12) of larger
bits. We also extend the efficient lattice sieve of dimen-
sion two to the lattice sieve of dimension higher than
two.
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