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Abstract

The Strassen algorithm and Winograd’s variant accelerate matrix multiplication by using
fewer arithmetic operations than standard matrix multiplication. Although many papers have
been published to accelerate single- as well as double-precision matrix multiplication by using
these algorithms, no research to date has been undertaken to accelerate multiple precision
matrix multiplication. In this paper, we propose a multiple precision matrix multiplication
program for matrices of any size and test its performance. We also reveal special properties
of our program through its application to LU decomposition.
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1. Introduction

Current large-scale scientific computations use mul-
tiple precision (MP) floating-point arithmetic beyond
the IEEE 754 single-precision (SP) and double-precision
(DP) computation standard to obtain precise numeri-
cal solutions. Although MP arithmetic libraries, such as
Multiple Precision Floating-Point Reliability (MPFR)
and the GNU Multiple Precision Arithmetic Library
(GMP), are software-based implementations, their MP
numerical computations are typically much slower than
hardware-based SP and DP computations. To prevent
the consequent increase in computational cost, efficient
MP numerical computation requires acceleration tech-
niques, such as effective use of cache memory and algo-
rithms to reduce the complexity of the computations.
Matrix multiplication is one of the most important

parts of numerical computation. It is well known through
research in DP matrix multiplication [1,2], that its com-
putational cost can be reduced by using Strassen’s algo-
rithm [3] and Winograd’s variant [4]. By referring to past
results, we can expect that MP matrix multiplication us-
ing these algorithms is more effective than in case of DP
arithmetic. On the other hand, less precise numerical re-
sults may be obtained by applying Strassen’s algorithm
and its variant [5].
In this paper, we propose the acceleration of MP ma-

trix multiplication using Strassen’s algorithm by com-
paring block matrix multiplication to increase the hit ra-
tio of the cache memory in the CPU. We apply this accel-
erated MP matrix multiplication to LU decomposition,
and examine both well-conditioned and ill-conditioned
examples in order to study its numerical properties.

2. Algorithms of Matrix Product

We consider the real matrix multiplication C :=
AB = [cij ] ∈ Rm×n, where A = [aij ] ∈ Rm×l and
B = [bij ] ∈ Rl×n in this paper. We use the following
algorithm to calculate cij :

cij :=
l∑

k=1

aikbkj . (1)

Eq. (1) is called “simple matrix multiplication” (“Sim-
ple,” for short).
To increase the hit ratio of the cache memory in the

processor, “block matrix multiplication” (Block) with
divided A and B are always used in well-tuned Basic
Linear Algebra Subprogram (BLAS) libraries, such as
the Automatically Tuned Linear Algebra Software (AT-
LAS) and the Intel Math Kernel. In this paper, we divide
A and B into small ML pieces of Aik and LN pieces of
Bkj , respectively. We can hence obtain blocked Cij by
the following matrix multiplication:

Cij :=
L∑

k=1

AikBkj .

These simple and blocked matrix multiplication pro-
cedures have identical computational cost.
On the other hand, Strassen’s algorithm to reduce the

computational cost of matrix multiplication is recursive
[3]. For even-dimensional matrices A and B (m, n, and
l are even), we divide A and B as follows:

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
. (2)

We calculate intermediate block matrices Pi (i =
1, 2, . . . , 7) by using four divided Aijs and Bijs (i, j =
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1, 2) as follows:

P1 := (A11 +A22)(B11 +B22),

P2 := (A21 +A22)B11,

P3 := A11(B12 −B22),

P4 := A22(B21 −B11),

P5 := (A11 +A12)B22,

P6 := (A21 −A11)(B11 +B12),

P7 := (A12 −A22)(B21 +B22).

By using these matrices P1, P2, . . . , P7, we can calcu-
late C as blocked Cij (i, j = 1, 2) as follows:

C :=

[
P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 + P3 − P2 + P6

]
.

By applying Strassen’s algorithm to matrix multiplica-
tion, the number of real multiplication Mul(m, l, n) and
real addition-subtraction operations Addsub(m, l, n) to
calculate matrix C using A and B is reduced as follows:

Mul(m, l, n) = 7Mul

(
m

2
,
l

2
,
n

2

)
,

Addsub(m, l, n) = 5Addsub

(
m

2
,
l

2

)
+ 5Addsub

(
l

2
,
n

2

)
+ 8Addsub

(m
2
,
n

2

)
.

Winograd proposed the self-titled “Winograd’s vari-
ant” (Winograd) algorithm that requires fewer matrix
addition and subtraction operations than Strassen’s al-
gorithm [4]. Winograd’s variant is constructed with di-
vided even-dimensional matrices in the same manner as
in Strassen’s algorithm (2). It computes matrix multi-
plication in the following three steps:

S1 := A21 +A22, S2 := S1 −A11,

S3 := A11 −A21, S4 := A12 − S2,

S5 := B12 −B11, S6 := B22 − S5,

S7 := B22 −B12, S8 := S6 −B21,

(3)


M1 := S2S6, M2 := A11B11, M3 := A12B21,

M4 := S3S7, M5 := S1S5, M6 := S4B22,

M7 := A22S8,

(4)

T1 := M1 +M2, T2 := T1 +M4. (5)

Through (3)→(4)→(5), we can obtain C as follows:

C :=

[
M2 +M3 T1 +M5 +M6

T2 −M7 T2 +M5

]
.

Winograd’s variant involves the following arithmetical
operations:

Mul(m, l, n) = 7Mul

(
m

2
,
l

2
,
n

2

)
,

Table 1. Relative complexity of Strassen’s and Winograd’s algo-
rithms (vs. Simple and Block algorithms).

Strassen Winograd

nmin = 32 Add & Sub Mul Add & Sub Mul

255 × 255 0.678 0.781 0.678 0.764

256 × 256 0.670 0.772 0.670 0.755
257 × 257 0.674 0.775 0.674 0.758
511 × 511 0.590 0.688 0.590 0.672
512 × 512 0.586 0.684 0.586 0.668

513 × 513 0.589 0.686 0.589 0.670
1023 × 1023 0.514 0.605 0.514 0.590
1024 × 1024 0.513 0.603 0.513 0.588
1025 × 1025 0.514 0.604 0.514 0.589

2047 × 2047 0.449 0.531 0.449 0.517
2048 × 2048 0.449 0.530 0.449 0.516
2049 × 2049 0.450 0.531 0.450 0.517

Addsub(m, l, n) = 4Addsub

(
m

2
,
l

2

)
+ 4Addsub

(
l

2
,
n

2

)
+ 7Addsub

(m
2
,
n

2

)
.

As we can observe, it can reduce a Addsub(m/2, l/2),
a Addsub(l/2, n/2), and a Addsub(m/2, n/2) operation.
In addition to Strassen’s algorithm and Winograd’s

variant, we implement two matrix multiplication algo-
rithms: a simple three-loop algorithm (1) and a block
algorithm (2). The four algorithms can obtain ma-
trix products of any precision for matrices of any size.
Strassen and Winograd recursively divided matrices A
and B until the row and column dimensions were smaller
than nmin as the minimal dimension. In case of an odd
number of row or column dimensions of A or B, we fit
them to become even by using a mixture of dynamic
padding and peeling [1].
Table 1 shows the reduction rates of Strassen’s algo-

rithm and Winograd’s variant in comparison with Sim-
ple and Block in case of nmin = 32. Both recursive al-
gorithms can reduce multiplication operations by 45%
and addition-subtraction operations by 52% in case of
m × n = 2048 × 2048. There is a difference of a few
percentage points in the efficiency of the addition and
subtraction operations between the Strassen algorithm
and Winograd’s variant, and manifests itself as a more
significant difference in computational time, as shown in
the next section.

3. Benchmark tests of square and rect-

angle matrix multiplications

In this section, we use aij and bij , the elements of A
and B, respectively, as follows:

aij =
√
5 (i+ j − 1), bij =

√
3 (n− i+ 1).

We then show the results of C := AB. Our numerical
computational environment was as follows:

H/W Intel Core i7 3850 (3.6 GHz), 64 GB RAM.

S/W Scientific Linux 6.3 x86 64, Intel C Compiler Ver.
13.0.1, BNCpack ver. 0.8, MPFR 3.1.2, GMP 5.1.3.
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Table 2. Computation time: Block algorithm (128 bits).

m× n Simple Block(16) Block(32) Block(64)

255 × 255 1.06 1.20 1.22 1.24
256 × 256 1.25 1.22 1.22 1.25

257 × 257 1.04 1.25 1.28 1.37
511 × 511 9.60 9.71 9.61 10.02
512 × 512 10.83 9.70 9.68 9.96

513 × 513 10.02 9.89 9.97 10.44
1023 × 1023 107.78 77.63 77.80 79.36
1024 × 1024 213.09 77.77 77.72 79.51
1025 × 1025 94.62 78.92 78.41 81.48

2047 × 2047 756.81 627.75 619.21 648.31
2048 × 2048 1679.04 624.86 618.87 639.71
2049 × 2049 632.74 623.24 625.69 640.84

Table 3. Computation time: Strassen’s and Winograd’s algo-
rithms (128 bits).

m× n min(Simple, Block) Strassen Winograd

255 × 255 1.06 0.72 0.63
256 × 256 1.22 0.70 0.57
257 × 257 1.04 0.74 0.60

511 × 511 9.60 4.84 4.06
512 × 512 9.68 4.77 3.73
513 × 513 9.89 4.92 3.88

1023 × 1023 77.63 32.02 25.57

1024 × 1024 77.72 31.53 24.10
1025 × 1025 78.41 32.21 24.77
2047 × 2047 619.21 211.80 163.87

2048 × 2048 618.87 211.19 155.67
2049 × 2049 623.24 212.79 157.52

Table 4. Computation time: Strassen’s and Winograd’s algo-

rithms (1024 bits).

n× n min(Simple, Block) Strassen Winograd

255 × 255 5.46 2.33 1.95
256 × 256 5.53 2.31 1.72
257 × 257 5.61 2.41 1.81
511 × 511 43.81 13.40 10.57

512 × 512 44.20 13.02 9.44
513 × 513 44.37 13.38 9.81

1023 × 1023 352.79 76.93 57.98
1024 × 1024 355.99 74.58 52.47

1025 × 1025 356.58 76.36 54.22
2047 × 2047 2820.16 454.02 329.41
2048 × 2048 2824.34 446.87 302.56
2049 × 2049 2829.95 456.08 307.05

All computations were serially executed without any
parallelization. Since MPFR is a binary multiple pre-
cision floating-point library, we used a binary length of
the mantissa as precision within a range of 128 to 8192
bits.
We first discuss the results of square matrix multi-

plication (m = n = l). Table 2 is obtained by using
Simple and Block. Block(nmin) represents the minimal
dimension of the divided block matrices Aik and Bkj as
three values of nmin = 16, 32, 64. Block is the most effec-
tive algorithm in the case of 128-bit precision arithmetic,
but we cannot recognize the difference between Simple
and Block in case of 1024-bit precision. In case of 128
bits, the largest relative error in the elements of C was
1.34× 10−37 and the smallest was 5.23× 10−39. As a re-
sults, we obtained many times of smallest computational
times in the case of nmin = 32.

Table 5. Computation time: Rectangle matrix multiplication
(nmin = 32, Unit: seconds).

128 bits computation
m(= n), l Simple Block(32) Strassen Winograd

1024, 63 5.09 5.86 5.31 4.29

1024, 64 5.18 5.91 5.03 3.99
1024, 65 5.26 6.30 5.24 4.21

1024, 127 10.47 11.8 9.43 6.45
1024, 128 10.54 11.86 8.71 5.42

1024, 129 10.63 12.24 8.90 5.65
1024, 255 52.51 23.69 14.67 9.39
1024, 256 52.27 23.77 13.13 7.51

1024, 257 52.56 24.07 13.39 7.70
1024, 511 110.75 47.42 26.40 16.55
1024, 512 106.19 47.44 21.85 11.83
1024, 513 110.82 47.96 22.08 12.09

1024 bits computation
m(= n), l Simple Block(32) Strassen Winograd

1024, 63 24.71 26.74 19.92 14.88
1024, 64 25.77 27.13 19.49 14.31

1024, 65 26.24 27.82 20.04 14.91
1024, 127 52.37 53.75 32.26 19.02
1024, 128 53.17 54.23 30.69 16.74
1024, 129 53.59 54.97 30.79 17.37

1024, 255 105.04 108.90 47.43 24.15
1024, 256 106.34 108.64 43.12 19.83
1024, 257 106.92 109.83 43.63 20.48
1024, 511 244.07 216.82 71.30 34.18

1024, 512 245.69 216.65 61.01 25.22
1024, 513 247.96 217.69 62.14 25.91

We show Table 3 (128 bits precision) and Table 4
(1024 bits) for the sake of comparison. These results
of Strassen’s algorithm and Winograd’s variant are ob-
tained with nmin = 32 due to these of Blocks.
The maximum relative errors in cijs are as follows:

128bits Strassen: 3.20×10−36, Winograd: 2.25×10−35.

1024bits Strassen: 6.30 × 10−306, Winograd: 3.92 ×
10−305.

On occasion, the results of Winograd’s variant are worse
that those of Strassen’s algorithm by one decimal digit.
We list the computation times of rectangle matrix

multiplication for the four algorithms in Table 5. All ma-
trix multiplication operations obtain 1024-dimensional
square matrices as their final result. In these cases, Block
is faster than Simple beyond l = 255 or 511, and Wino-
grad is always faster than Strassen within 37 seconds.

4. Application to LU decomposition

It is well known that matrix multiplication can be
applied to LU decomposition [6]. In this section, no LU
decomposition involves any pivoting.
We consider the linear equation (6) with A ∈ Rn×n,

b ∈ Rn:

Ax = b. (6)

We use direct methods for the LU decomposition of the
coefficient matrix by setting the block size to K. LU de-
composition with matrix multiplication (the underlined
part) is then as follows:
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(1) Divide A into A11 ∈ RK×K , A12 ∈ RK×(n−K),
A21 ∈ R(n−K)×K , and A22 ∈ R(n−K)×(n−K).

(2) Decompose A11 into L11U11(= A11), and then
transform A12 to U12 and A21 to L21.

(3) A
(1)
22 := A22 − L21U12.

After substituting A := A
(1)
22 , repeat the above algorithm

until n−K ≥ 0.
We employ a random matrix as an instance of a well-

conditioned matrix and a Lotkin matrix as that of an
ill-conditioned one.

Random Matrix aij is a random number in [−1, 1].

Lotkin Matrix

aij =

{
1 (i = 1)

1
i+j−1 (i ≥ 2)

.

The true solution is x = [0, 1, . . . , n − 1]T , and we set
b := Ax. The condition numbers ∥A∥1∥A−1∥1 of the
random matrix and the Lotkin matrix in n = 1024 are
4.4 × 106 and 4.3 × 101576, respectively. For the Lotkin
matrix, we must use more than 8192 bits (about 2466
decimal digits ) in n = 1024.
The size of the Ks are set as K = αnmin (α =

1, 2, . . . , 10) and nmin = 32. Furthermore, we investi-
gated the computation time (seconds) and the maxi-
mum relative error of the numerical solutions x at each
α. Fig. 1 (random matrix) and Fig. 2 (Lotkin matrix)
show the results. For comparison, the computation time
and the maximum relative errors obtained using normal
LU decomposition (column-wise LU) are shown in these
figures.
We observe that we can reduce computation time by

21 to 26% for a random matrix (n = 1024). For larger
values of α, the maximum relative errors grow from ap-
proximately two to four decimal digits. The computation
times of Strassen’s algorithm andWinograd’s variant are
within two seconds of each other.
We only show the results of using Winograd variant

on the Lotkin matrix. In this case, the relative error in-
creased 138 decimal digits (n = 1024). Thus, Winograd’s
variant operates in 8650 bits of computation in order to
recover the increment of the relative error. Consequently
we can reduce the computation time by 32%.

5. Conclusion and future work

We obtained the following results through our bench-
mark tests involving Simple, Block, Strassen’s algo-
rithm, and Winograd’s variant.

• The Block algorithm was more efficient than Simple
algorithm when precision was relatively low, even in
a multiple precision arithmetic environment.

• Winograd’s variant is always faster than Strassen’s
algorithm.

• LU decomposition with Strassen’s algorithm and
Winograd’s variant is faster than column-wise LU,
but causes the loss of significant digits when the rel-
evant coefficient matrix is ill-conditioned, such as
Lotkin matrix.
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Fig. 1. Computation time and relative error of 1024× 1024 ran-
dom matrix (Upper: 256 bits, Lower: 1024 bits).
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Fig. 2. Computation time and relative error of 1024 × 1024
Lotkin matrices (8192 and 8650 bits).

In future research, we will modify the block and recur-
sive algorithms by using turning and parallelizing tech-
niques.
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