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Abstract

The joint singular value decomposition of multiple rectangular matrices is formulated as a
Riemannian optimization problem on the product of two Stiefel manifolds. In this paper, the
geometry of the objective function and the Riemannian manifold for this problem are studied
to develop a Riemannian trust-region algorithm. The proposed algorithm globally and locally
quadratically converges, and our numerical experiments demonstrate that it performs much
better than the steepest descent method.
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1. Introduction

In the Tomasi-Kanade factorization method, scene ge-
ometry and camera motion are recovered from a se-
quence of camera images using the singular value de-
composition (SVD) of a measurement matrix [1]. In [2],
the problem was extended to several cameras installed in
the same direction. Several measurement matrices were
obtained from the cameras, and the SVD of the Tomasi-
Kanade factorization was generalized to the joint singu-
lar value decomposition (JSVD) of these measurement
matrices. However, the matrices do not generally have
a common set of singular vectors, so they cannot be ex-
actly decomposed into SVD forms by a common pair
of orthogonal matrices. Thus, we must define the ap-
proximate JSVD problem as an optimization problem.
Some other applications to blind source separation were
also discussed in [3]. Furthermore, the JSVD is related to
the Karhunen-Loève transform, which is a useful tool for
image compression [4]. As such, JSVD is an important
technique that is worth studying.
The SVD of a single matrix can also be written as an

optimization problem. This problem contains orthonor-
mality constraints on the variable matrices. Note that
the Stiefel manifold St(p, n) with p ≤ n is defined to
be the set of all n× p orthonormal matrices. In [5], the
problem was rewritten as an optimization problem on
the product of two Stiefel manifolds, and several algo-
rithms were developed. Optimization techniques on Rie-
mannian manifolds are called Riemannian optimization.
They have recently been intensively researched [6], and
many general efficient algorithms have been developed.
In this paper, we consider the JSVD problem as a

Riemannian optimization problem on the product of two
Stiefel manifolds and develop the trust-region method
for the problem.

2. Joint singular value decomposition

Let A1, A2, . . . , AK be m× n real matrices with m ≥
n. We assume that p ≤ n throughout this paper. We
consider the following JSVD problem as a Riemannian
optimization problem.

Problem 1

minimize f(U, V ) = −
K∑
l=1

∥diag
(
UTAlV

)
∥2F ,

subject to (U, V ) ∈ St(p,m)× St(p, n),

where ∥·∥F denotes the Frobenius norm of the matrix
and the Stiefel manifold St(p, n) is defined as

St(p, n) := {Y ∈ Rn×p|Y TY = Ip},

and where f is defined on St(p,m)× St(p, n), not in the
whole Rm×p × Rn×p.

To derive optimization algorithms for Problem 1, we
must study the geometry of the problem. We first review
the geometry of St(p,m)× St(p, n). See [5] for more de-
tails.
The tangent space of St(p,m)× St(p, n) at (U, V ) is

T(U,V )(St(p,m)× St(p, n))

= {(ξ, η) ∈ Rm×p × Rn×p|
ξTU + UT ξ = ηTV + V T η = 0}.

We can endow St(p, n) with the Riemannian metric

⟨ξ1, ξ2⟩Y = tr(ξT1 ξ2), ξ1, ξ2 ∈ TY St(p, n), (1)

where TY St(p, n) is the tangent space of St(p, n) at Y .
The Riemannian metric (1) is induced from the natural
inner product

⟨B,C⟩ = tr(BTC), B, C ∈ Rn×p,
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in the Euclidean space Rn×p. Using the induced metric
(1), we can view St(p,m) × St(p, n) as a Riemannian
manifold with the Riemannian metric

⟨(ξ1, η1), (ξ2, η2)⟩(U,V ) = tr(ξT1 ξ2) + tr(ηT1 η2),

(ξ1, η1), (ξ2, η2) ∈ T(U,V )(St(p,m)× St(p, n)). (2)

Under the Riemannian metric (2), the orthogonal pro-
jection map onto the tangent space at (U, V ) acts on
(B,C) ∈ Rm×p × Rn×p as

P(U,V )(B,C)

=
(
B − U sym

(
UTB

)
, C − V sym

(
V TC

))
, (3)

where sym(·) denotes the symmetric part of the matrix
in the parentheses; that is, sym(A) =

(
A+AT

)
/2.

We proceed to the geometry of the objective function
f . Let f̄ be a function with the same form as f defined
in Rm×p × Rn×p; that is,

f̄(U, V ) = −
K∑
l=1

∥diag
(
UTAlV

)
∥2F ,

(U, V ) ∈ Rm×p × Rn×p. (4)

Note that (4) can be rewritten as

f̄(U, V ) = −
K∑
l=1

tr
(
UTAlV diag

(
UTAlV

))
.

The Euclidean gradient ∇f̄ and the Hessian ∇2f̄ can
then be computed as

∇f̄(U, V ) = −2

K∑
l=1

(
AlV Dl, A

T
l UDl

)
,

∇2f̄(U, V )[(ξ, η)]

= −2
K∑
l=1

(
Al(ηDl + V D′

l), A
T
l (ξDl + UD′

l)
)
,

where Dl := diag(UTAlV ), D′
l := diag(ξTAlV +

UTAlη), and (ξ, η) ∈ Rm×p × Rn×p.
The gradient grad f of f on St(p,m)×St(p, n) can be

calculated by the projection map (3) on the Euclidean
gradient ∇f̄ . That is,

grad f(U, V ) = P(U,V )(∇f̄(U, V ))

= −2

K∑
l=1

(AlV Dl − U sym(SlDl),

AT
l UDl − V sym(DlSl)

)
,

(5)

where we have defined Sl := UTAlV .
The Hessian Hess f of f on St(p,m)×St(p, n) can also

be expressed by using ∇2f̄ and the projection map (3).
That is,

Hess f(U, V )[(ξ, η)] = P(U,V )(D(grad f)(U, V )[(ξ, η)]).
(6)

Note that grad f(U, V ) = P(U,V )(∇f̄(U, V )). We regard
the right-hand side of this relation as a product of two
matrix functions of U and V , rather than a composition

of a map and a function. Then, (6) can be written as

Hess f(U, V )[(ξ, η)]

= P(U,V )(D(grad f)(U, V )[(ξ, η)])

= P(U,V )(D(P(U,V )(∇f̄))(U, V )[(ξ, η)])

= P(U,V )(DP(U,V )[(ξ, η)](∇f̄(U, V ))

+ P(U,V )(D(∇f̄)(U, V )[(ξ, η)]))

= P(U,V )(DP(U,V )[(ξ, η)](∇f̄(U, V ))

+∇2f̄(U, V )[(ξ, η)]), (7)

where

DP(U,V )[(ξ, η)](B,C)

=
(
−ξ sym(UTB)− U sym(ξTB),

−η sym(V TC)− V sym(ηTC)
)
. (8)

We have used the relation P 2
(U,V ) = P(U,V ) in the last

equality of (7). Furthermore, if S1 and S2 are p×p sym-
metric matrices, we have

P(U,V )(US1, V S2)

=
(
US1 − U sym(UTUS1), V S2 − V sym(V TV S2)

)
= 0. (9)

This relation can reduce the computational cost of
P(U,V )(DP(U,V )[(ξ, η)](∇f̄(U, V ))) in (7). Indeed, it fol-
lows from (8) and (9) that

P(U,V )(DP(U,V )[(ξ, η)](B,C))

= −P(U,V )

(
ξ sym(UTB), η sym(V TC)

)
, (10)

for any (B,C) ∈ Rm×p × Rn×p. Consequently, we can
compute Hess f(U, V )[(ξ, η)] using (7) with (10).

3. Trust-region method for Problem 1

In this section, for simplicity, we let M := St(p,m)×
St(p, n), x := (U, V ) ∈ M , ζ := (ξ, η) ∈ TxM .
In [2], Problem 1 with p = n is solved using a gradient

flow of the objective function f . That is, they solved a
differential equation

ẋ = − grad f(x),

which is in fact a pair of equations
U̇ = 2

K∑
l=1

(AlV Dl − U sym(SlDl)),

V̇ = 2
K∑
l=1

(AT
l UDl − V sym(DlSl)).

Note that our resultant grad f (5) is more general than
that in [2], because we assume that the integer p ≤ n is
arbitrary, whereas p = n in [2].
In Riemannian optimization methods, the steepest

descent method with a geodesic on M corresponds to
solving a differential equation so that it follows a nega-
tive gradient flow. In the Riemannian steepest descent
method, we often use a more efficient curve than a
geodesic. In other words, we use a better map than the
exponential map. Such a map is called a retraction [6]. It
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is a map from the tangent bundle TM to M and defines
an appropriate curve for the line search.
A reasonable choice for a retraction RSt on the Stiefel

manifold St(p, n) is

RSt
Y (ξ) = qf(Y + ξ), Y ∈ St(p, n), ξ ∈ TY St(p, n),

where qf(·) denotes the Q factor of the QR decomposi-
tion of the matrix in parentheses. If a full-rank matrix
B has the QR decomposition B = QR, then qf(B) = Q.
A useful retraction R on M = St(p,m) × St(p, n) can
then be defined by

R(U,V )(ξ, η) = (qf(U+ξ), qf(V +η)), (ξ, η) ∈ T(U,V )M.
(11)

R on M then satisfies the following properties which
appear in the definition of a general retraction.

(1) Rx(0x) = x, where 0x is the zero element of TxM .

(2) With the identification T0xTxM ≃ TxM , we have
DRx(0x) = idTxM , where DRx(0x) denotes the
derivative of Rx at 0x, and idTxM is the identity
map on TxM .

In the steepest descent method, we construct a se-
quence using the update formula

xk+1 = Rxk
(−αk grad f(xk)),

where αk > 0 is a step size satisfying some conditions
(such as the Armijo or Wolfe conditions [6]). The steep-
est descent method globally converges, but very slowly,
whereas the trust-region method generates a sequence
that converges much faster. The results of our numeri-
cal experiments are shown in Section 4.
In the Riemannian trust-region method [6], we con-

struct a quadratic model of the objective function within
a so-called trust-region. A trust-region with a radius
∆ > 0 at x ∈ M is defined as a ball in TxM such that
{ζ ∈ TxM |∥ζ∥x ≤ ∆}. In this trust-region, we approxi-
mate the original objective function f using the Taylor
expansion. That is,

m̂x(ζ) = f(x) + ⟨grad f(x), ζ⟩x +
1

2
⟨Hess f(x)[ζ], ζ⟩x.

(12)
The trust-region sub-problem at x ∈ M with a radius ∆
is then formulated as to minimize m̂x(ζ) subject to ζ ∈
TxM, ∥ζ∥x ≤ ∆. After obtaining the solution ζ∗ to this
sub-problem, we compare the decrease in the objective
function f and the model m̂x attained by ζ∗, to evaluate
whether ζ∗ should be accepted, and whether the trust-
region with the radius ∆ is appropriate. This process is
summarized in Algorithm 1.
In Algorithm 1, we can use the retraction R defined

by (11). m̂xk
is defined by (12), which can be computed

by using the formulas for the gradient and Hessian of
the objective function given in (5) and (7).
The trust-region sub-problem (Step 3) can be solved

by means of the truncated conjugate gradient (CG) al-
gorithm [6]. Because the trust-region sub-problem is the
Euclidean optimization problem if we regard TxM as
Euclidean space, we can apply the standard linear CG
algorithm. We must note that at iteration j of the in-
ner truncated CG algorithm, if the updated vector ζj+1

Algorithm 1 Trust-Region Method for Problem 1

1: Choose parameters ∆̄ > 0,∆0 ∈ (0, ∆̄), ρ′ ∈ [0, 1
4 ),

and an initial point x0 ∈ M .
2: for k = 0, 1, 2, . . . do
3: Calculate

ζk = argminζ∈Txk
M

{
m̂xk

(ζ)|⟨ζ, ζ⟩xk
≤ ∆2

k

}
.

4: Evaluate ρk :=
f(Rxk

(0))−f(Rxk
(ζk))

m̂xk
(0)−m̂xk

(ζk)
.

5: if ρk < 1/4 then
6: ∆k+1 = (1/4)∆k.
7: else if ρk > 3/4 and ∥ζk∥xk

= ∆k then
8: ∆k+1 = min(2∆k, ∆̄).
9: else
10: ∆k+1 = ∆k.
11: end if
12: if ρk > ρ′ then
13: xk+1 = Rxk

(ζk).
14: else
15: xk+1 = xk.
16: end if
17: end for

does not satisfy ∥ζj+1∥ ≤ ∆, we adjust the step length
so that ∥ζj+1∥ = ∆.
In general, it can be shown that if the objective func-

tion is smooth and the Riemannian manifold is compact,
then the Riemannian trust-region method with the in-
ner truncated CG and appropriate parameters is glob-
ally and locally quadratically convergent [6]. Because our
problem is for a smooth objective function on a compact
Riemannian manifold, the proposed algorithm generates
a globally and quadratically convergent sequence.

4. Numerical results

We implemented the proposed algorithm using
Manopt, which is a MATLAB toolbox for optimization
on manifolds [7], and compared the algorithm with sev-
eral other methods.

4.1 Exact JSVD

In the first experiment, we considered the case in
which the target matrices have an exact JSVD form.
Let m = 5, n = p = 3, and K = 2. We prepared 5 × 3
matrices A1 and A2 in a similar manner to [8]. That is,

A1 = Urand diag(1, 2, 3)V
T
rand,

A2 = Urand diag(3, 2, 1)V
T
rand,

where Urand ∈ St(3, 5) and Vrand ∈ O(3)(= St(3, 3)) are
randomly chosen matrices, and O(n) denotes the orthog-
onal group of order n. We randomly chose an initial guess
(U0, V0) ∈ St(3, 5) × O(3), and fixed it throughout this
subsection. As mentioned in the previous section, the ex-
isting algorithm by Hori [2,8] corresponds to the steepest
descent method. We compared our proposed trust-region
method with the steepest descent and also (non-linear)
conjugate gradient methods.
It is clear from Fig. 1 that the trust-region method

(Algorithm 1) generated a sequence that quickly con-
verged to an optimal solution, as expected.
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Fig. 1. Comparison between the trust-region, steepest descent,
and non-linear conjugate gradient methods. The horizontal axis
represents the iteration number k and the vertical axis represents
the corresponding norm (∥grad f(xk)∥xk ).

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iteration number

N
or

m
 o

f t
he

 g
ra

di
en

t o
f f

 

 

trust−region
steepest descent
conjugate gradient

Fig. 2. Comparison between the three methods with K = 100
target matrices.

4.2 Approximate JSVD

We then ran some experiments for a more chal-
lenging and general case. In the context of recovering
scene geometry, there are an m × n matrix A that cor-
rectly describes the situation and measurement matrices
A1, A2, . . . , AK , where

Al = A+Nl, l = 1, 2, . . . ,K, (13)

and Nl, l = 1, 2, . . . ,K are noise matrices.
In our numerical experiment, we set K = 100,m =

100, n = 50, and p = 50, and used (13) to construct
target matrices A1, A2, . . . , A100, where each element of
Nl is an independent standard normal random variable.
In this case, we obtained a simple and reasonable ini-

tial guess for Problem 1 as follows. We first computed
the average Ā =

∑K
l=1 Al/K of A1, A2, . . . , AK . Then,

we computed the standard SVD for the single matrix Ā
to obtain Ā = Ū Σ̄V̄ T , and let U0 and V0 be the ma-
trices with the leftmost p columns of Ū and V̄ , respec-
tively. With (U0, V0) as an initial guess, we performed
numerical experiments similar to those in the previous
subsection.
The numerical results in Fig. 2 show that our algo-

rithm converges quadratically. The computational time
taken for 58 iterations of the trust-region method to
obtain the final point of the graph was 11.12 seconds.
For the achieved point (Utr, Vtr), the norm of the gra-
dient was ∥grad f(Utr, Vtr)∥(Utr,Vtr) = 2.047 × 10−8.
The point (Ust, Vst) obtained after 10000 iterations and

53.90 seconds of the steepest descent method satis-
fied ∥grad f(Ust, Vst)∥(Ust,Vst) = 0.7038. On average, the
computational times per iteration taken for the trust-
region and the steepest descent methods are 0.1918 and
5.390×10−3 seconds, respectively. That is, when consid-
ering the computational time per iteration, the steepest
descent method is faster than the trust-region method.
However, since the convergence speed of the steepest
descent method is much slower than that of the trust-
region method, the trust-region method is much superior
to the steepest descent method as a result.
Furthermore, the value of the objective function at the

point (Utr, Vtr) was f(Utr, Vtr) = −2.360× 104, whereas
f(U0, V0) = −2.073×104 and f(Ust, Vst) = −2.356×104.
This implies that the proposed algorithm significantly
decreased the value of the objective function.

5. Concluding remarks

We studied the geometry of the Riemannian optimiza-
tion problem (Problem 1), which describes the JSVD for
developing the Riemannian trust-region algorithm. Our
numerical experiments showed that the proposed algo-
rithm converges globally and quadratically, as indicated
by the theory.
As stated in [8], optimization-based methods are ex-

pected to have an advantage because they can be flexibly
used for on-line applications (i.e., for time-varying tar-
get matrices). This is because we can use the information
on the optimal solution at time t to guess a reasonable
initial point for the problem at the subsequent time t+.
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