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VWAP execution as an optimal strategy
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Abstract

The volume weighted average price (VWAP) execution strategy is well known and widely used
in practice. In this study, we explicitly introduce a trading volume process into the Almgren–
Chriss model, which is a standard model for optimal execution. We then show that the VWAP
strategy is the optimal execution strategy for a risk-neutral trader. Moreover, we examine the
case of a risk-averse trader and derive the first-order asymptotic expansion of the optimal
strategy for a mean-variance optimization problem.
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1. Introduction

Recently, researchers in the field of mathematical fi-
nance have increasingly begun studying the optimal exe-
cution problem. Bertsimas and Lo [1] and Almgren and
Chriss [2] are the classic and standard studies in the
field, while Gatheral and Schied [3] provide a survey of
dynamic models that address execution problems.
When studying execution problems, we should take

care of the market impact (MI), which is the effect that
a trader’s investment behavior has on security prices.
As pointed out by [4], the price recovery effect is effi-
cient as another property that affects the trader’s exe-
cution schedule. The price recovery effect is also recog-
nized as the resilience of the MI or transient MI, and
several studies have proposed optimal execution models
with MI functions and resilience functions (see [3] and
the references therein).
Furthermore, trading volume (turnover) is another im-

portant factor in execution problems. Trading volume
is a representative index of financial market activity. If
trading volume is high, the security is highly liquid, and
a trader can easily liquidate shares of the security. As
an execution strategy that exploits trading volume, the
volume weighted average price (VWAP) strategy is well
known and widely used in practice [5]. The execution
speed of the VWAP strategy is proportional to the trad-
ing volume of the relevant security. Although the VWAP
strategy is a standard execution strategy, it remains un-
clear why it is effective in terms of optimal execution
theory.
The purpose of this study is to investigate whether

the VWAP strategy is in fact optimal in an execution
problem equipped with explicitly defined trading volume
processes. Here, we introduce the generalized Almgren–
Chriss (AC) model, in which the temporary MI func-
tion is affected by the trading volume. Then, we show
that the VWAP strategy is optimal when the trader is

risk neutral. Moreover, we study the case of a risk-averse
trader and present the second-order linear ordinal differ-
ential equation (ODE), in which the solution is the op-
timal strategy of the corresponding mean-variance opti-
mization problem. Finally, we also provide the first-order
asymptotic expansion for the optimal strategy.

2. VWAP and VWAP strategies

In this section, we briefly introduce VWAP and define
VWAP execution strategies. First, St denotes a security
price at time t ∈ [0, T ], where T > 0 is a time horizon.
Mathematically, (St)t is regarded as a continuous-time
stochastic process. The strict definition of (St)t is omit-
ted in this section, but is provided in the next section.
Then, Vt denotes a cumulative trading volume pro-

cess on the time interval [0, T ]. We assume that Vt is
continuously differentiable and strictly increasing. That
is, there is a positive continuous process (vt)t, such that

Vt =

∫ t

0

vrdr, t ∈ [0, T ], a.s. (1)

Then, the VWAP of the security at t = T is defined as

SVWAP
T =

∫ T

0
Stvtdt∫ T

0
vtdt

=
1

VT

∫ T

0

Stvtdt. (2)

Next, we define the trader’s own VWAP. We consider
a single trader who has a large number of shares, Φ > 0,
at initial time t = 0, which he/she tries to liquidate
until t = T . A trader’s execution strategy is denoted by
ζ = (ζt)t, where ζt ≥ 0 is the execution (selling) speed at
time t. We assume the following “sell-off condition” [6]:∫ T

0

ζtdt = Φ. (3)

This condition implies that the trader must sell all secu-
rities held until the time horizon. The trader’s VWAP is
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defined by

Svwap
T (ζ) =

∫ T

0
Stζtdt∫ T

0
ζtdt

.

Then, the VWAP execution strategy are defined as
follows.

Definition 1 ζ = (ζt)t is called a VWAP strategy if
ζt = γvt, t ∈ [0, T ] a.s., for some γ > 0.

Note that γ is called an involvement ratio. It is immedi-
ately shown that if ζ is a VWAP strategy, then Svwap

T (ζ)
coincides with SVWAP

T a.s. To sell Φ shares of the secu-
rity using the VWAP strategy, γ is set so that ζ satisfies
(3). That is,

Φ =

∫ T

0

γvtdt = γVT ,

which implies that γ = Φ/VT . However, such a strategy
cannot be executed in practice, because the value of VT

is unobservable before the time horizon, T .
The difference between two VWAPs, Svwap

T (ζ) and
SVWAP
T , is called a VWAP slippage. Minimizing VWAP

slippage problems is studied by [7, 8].

3. The AC model with trading volume

In this section, we introduce our model of an optimal
execution problem. Our model is based on the ACmodel,
as proposed by [2] and generalized by the authors of [3].
Let (Ω,F , (Ft)t, P ) be a stochastic basis and let (S0

t )t
be an (Ft)t-martingale satisfying

E[(S
0
T )

2] < ∞.

Here, S0
t is regarded as an unaffected price of the security

at time t. In other words, it is the security price when
there is no MI.
The execution strategy ζ = (ζt)t is referred to as ad-

missible if ζ = (ζt)t is (Ft)t-adapted and satisfies the
sell-off condition (3). The set of admissible strategies is
denoted by A(Φ). Under the given admissible strategy,
ζ ∈ A(Φ), the security price, St, is defined as follows:

St = S0
t −

∫ t

0

g(ζr)dr − g̃(vt, ζt), (4)

where g (resp., g̃) is a permanent (resp., temporary) MI
function and (vt)t is a positive (Ft)t-adapted process
describing the instantaneous trading volume.
In this study, g is always assumed to be a linear func-

tion:

g(ζ) = κζ,

for some κ > 0. This assumption is necessary given the
view of an absence of price manipulation. See [3] for more
detail.
The temporary MI function, g̃, depends on the execu-

tion strategy, ζt, and the trading volume, vt. It is natural
that the temporary MI is decreasing as the trading vol-
ume increases, because a large trading volume implies
high market liquidity. Therefore, we adopt the following

form as the function g̃:

g̃(v, ζ) =
κ̃ζ

v
, (5)

where κ̃ > 0.

Remark 2 We can generalize the form of g̃ as

g̃(v, ζ) = k(v)ζα, (6)

where α > 0 and k is a positive continuous function. See
also Remark 5 below.

Next, we define our objective function. For a given ζ,
an implementation shortfall (IS) cost is defined as

C(ζ) = S0Φ−
∫ T

0

Stζtdt. (7)

Substituting (4) and applying the integration by parts
formula, we can rewrite (7) as

C(ζ) = κΦ2

2
−
∫ T

0

φtdS
0
t + κ̃

∫ T

0

ζ2t
vt

dt,

where

φt = Φ−
∫ t

0

ζrdr (8)

denotes the remaining shares of the security held at
time t.
We define the following three classes of admissible

strategies:

Aant(Φ) = {ζ ∈ A(Φ) ; GT -measurable},

Aadap(Φ) = {ζ ∈ A(Φ) ; (Gt)t-adapted},

Astat(Φ) = {ζ ∈ A(Φ) ; independent of (Gt)t},

where (Gt)t is a filtration generated by (vt)t.
Strategy ζ ∈ Aant(Φ) is called an anticipating strat-

egy. In this case, the trader knows the value of VT (the
cumulative trading volume defined by (1)) at the initial
time. Therefore, he/she can execute the VWAP strategy
with the involvement ratio Φ/VT . Note that in this case
it should hold that GT ⊂ F0. This case is unrealistic, but
the optimal anticipating strategy gives us a benchmark
for execution strategies.
Strategy ζ ∈ Aadap(Φ) is called an adaptive strat-

egy. It is natural to search for an optimal strategy from
within the adaptive strategies, but the problem may be-
come difficult.
Strategy ζ ∈ Astat(Φ) is called a static strategy. In

trading practice, a VWAP strategy is often classified as a
static (deterministic) strategy. In this case, an estimated
cumulative trading volume is used as a substitute for VT .

3.1 Risk-neutral case
In this subsection, we examine the case in which the

trader is risk neutral. Our purpose is to minimize the
expected IS cost,

E[C(ζ)] =
κΦ2

2
+ κ̃E

[∫ T

0

ζ2t
vt

dt

]
. (9)

Here, equality (9) follows from the martingale property
of (S0

t )t. We can then show the following two theo-
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rems by applying the Jensen inequality and appropriate
changes of variables.

Theorem 3 ζ̂t = vtΦ/VT is the optimal anticipating
strategy for the problem infζ∈Aant(Φ) E[C(ζ)].
Theorem 4 Set ut = 1/E[1/vt] and assume that ut is
finite and continuous in t. Then, ζ̃t = utΦ/UT is the op-
timal static strategy for the problem infζ∈Astat(Φ) E[C(ζ)],
where UT =

∫ T

0
utdt.

The strategy (ζ̂t)t is the VWAP strategy. Therefore,
Theorem 3 gives the typical case in which the VWAP
strategy is optimal for the execution problem. Note again
that the “exact” VWAP strategy, (ζ̂t)t, is not executable
without observing the future value of the cumulative
trading volume, VT . However, it provides a benchmark
strategy for the optimal execution problem.
Theorem 4 tells us how to mimic the VWAP strategy,

(ζ̂t)t. The expected VWAP strategy (ζ̃t)t is optimal in
the class of static strategies, and the expectation ut of vt
is calculated in the sense of a harmonic mean. In prac-
tice, the estimated value of the trading volume based on
historical data is often applied to replicate the VWAP
strategy. The assertion of Theorem 4 is consistent with
such a situation.

Remark 5 We can also show the above two theorems
when g̃ has a more general form, as in (6). In this case,

ζ̂t is given as ζ̂t = ṽtΦ/ṼT , where

ṽt =
1

k(vt)1/α
, ṼT =

∫ T

0

ṽtdt.

We refer to (ζ̂t)t as a “twisted” VWAP strategy. Simi-
larly, ζ̃t is changed to ζ̃t = ũtΦ/ŨT , where

ũt =
1

E[k(vt)]1/α
, ŨT =

∫ T

0

ũtdt.

Finally, we consider the adaptive case. Here, we only
consider the special case in which (vt)t follows a geomet-
ric Brownian motion:

dvt = vt(µdt+ σdBt), t ≥ 0, v0 > 0,

where µ ∈ R, σ > 0, and (Bt)t is a one-dimensional
(Ft)t-Brownian motion. Then, we obtain the following
theorem using a standard verification argument of dy-
namic control theory.

Theorem 6 Assume E[UT ] < ∞. Then ζ̃t, defined in
Theorem 4, is the optimal adaptive strategy for the prob-
lem infζ∈Aadap(Φ) E[C(ζ)].
This theorem implies that the optimal adaptive strat-

egy coincides with the expected VWAP strategy, which
is also optimal among the static strategies.

Remark 7 When vt is a constant, the optimal strategy
is selling with constant speed (i.e., ζ̂t = ζ̃t = Φ/T ). This
strategy is called a time weighted average price (TWAP)
strategy. In [6,9], we find similar examples such that the
TWAP strategy is the optimal strategy for a risk-neutral
trader when the permanent MI function is non-linear. In
particular, [9, Theorem 7.4] gives the example of an “S-
shaped” MI function, which is often observed in practice.

3.2 Mean-variance optimization
Next, we study the following static mean-variance op-

timization problem:

inf
ζ∈Astat(Φ)

MVλ(C(ζ)), (10)

where λ ≥ 0 and

MVλ(C(ζ)) = E[C(ζ)] + λVar(C(ζ)).

The parameter λ denotes the measure of the trader’s risk
aversion. When λ = 0, the above problem is equivalent
to that of the previous subsection.
In this subsection, we assume the following:

• S0
t = S0

0 + σ̃B̃t, where σ̃ > 0 and (B̃t)t is a one
dimensional (Ft)t-Brownian motion.

• vt is deterministic, vt ∈ C1((0, T )) and vt ≥ δ, t ∈
[0, T ] for some δ > 0 (v0 and vT may diverge).

By a straightforward calculation, we see that

MVλ(C(ζ)) = κΦ2

2
+ κ̃fλ(Φ; ζ),

for ζ ∈ Astat(Φ), where

fλ(Φ; ζ) =

∫ T

0

{
σ̃2λ

κ̃
φ2
t +

ζ2t
vt

}
dt

and (φt)t is defined as in (8). Therefore, our optimiza-
tion problem is equivalent to the following variational
problem:

inf
φ

∫ T

0

F (t, φt, φ̇t)dt, (11)

subject to φ0 = Φ and φT = 0, where φ = (φt)t∈[0,T ] is
absolutely continuous and

F (t, φ, ζ) =
σ̃2λ

κ̃
φ2 +

ζ2

vt
.

From the standard theory of variational analysis, we
can show the following theorem.

Theorem 8 There is a unique optimizer to (11) sat-
isfying the following second-order linear ODE with vari-
able coefficients:

φ̈t − atφ̇t −
σ̃2λ

κ̃
φt = 0, (12)

where

at =
v̇t
vt

=
d

dt
log vt.

The above theorem implies that we can find the op-
timizer by solving the ODE (12) with boundary condi-
tions φ0 = Φ and φT = 0, and the optimal strategy of
the problem (10) is obtained as ζt = −φ̇t.

Remark 9 If vt is a constant, the optimal strategy is
explicitly obtained in [2] as

ζλt =
cosh(γλ(T − t))

sinh(γλT )
γλΦ,

where γλ = σ̃2λ/κ̃. The corresponding process, (φt)t, is
given by

sinh(γλ(T − t))

sinh(γλT )
Φ. (13)
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In this case, (12) becomes the ODE with constant coef-
ficients. Then the solution can be explicitly solved and
coincides with (13).

Here, we formally derive the first-order asymptotic ex-
pansion of the optimal strategy of (10) with small λ.
Let ζλ = (ζλt )t be the optimal strategy of (10) and put

φλ
t = Φ−

∫ t

0
ζλr dr. We already know that when λ = 0, it

holds that

ζ0t =
vtΦ

VT
, φ0

t =

(
1− Vt

VT

)
Φ.

Define φ̃λ
t = (φλ

t −φ0
t )/λ. Then we can easily check that

(φ̃λ
t )t is a solution to

¨̃φλ
t − at ˙̃φ

λ
t − vt

(
φ0
t +

σ̃2λ

κ̃
φ̃λ
t

)
= 0,

with boundary conditions φ̃λ
0 = φ̃λ

T = 0. Letting λ → 0,
we get

¨̃φ0
t − at ˙̃φ

0
t = vt

(
1− Vt

VT

)
Φ.

Hence,

φ̃0
t = Φ

{
tVt −

(
1 +

Vt

VT

)
Vt −

1

VT

∫ t

0

V 2
r dr + CVt

}
,

where

C =
2VT

VT
− T − 1

V 2
T

∫ T

0

V 2
r dr, Vt =

∫ t

0

Vrdr.

Now we get the following asymptotic expansion formula
around the VWAP strategy:

ζλt =
vtΦ

VT
+ λζ̃0t + o(λ), λ → 0,

where ζ̃0t = − ˙̃φt is given by

ζ̃0t = Φvt

{
T − t− VT − Vt

VT
− 1

VT

(
VT −

∫ T

0

V 2
r dr

)}
.

Remark 10 In fact, we can also solve (10) numerically
(even when (vt)t is not deterministic) by, for instance,
using the sequential quadratic programming algorithm.

Finally, we give a numerical example of an “arcsine
cumulative trading volume process.” For brevity, set
T = 1. Assume that vt = 1/(π

√
t(1− t)). Then Vt is

given by the arcsine function: Vt = 2π−1 arcsin
√
t. Note

that vt −→ ∞ as t → 0 and t → 1: this reflects the realis-
tic situation in which the market is active near the open-
ing and closing, but becomes less active in the continu-
ous session. Then, we investigate the optimal strategies
when setting λ = 0 (VWAP), 0.5, 1, and 2. The other
parameters are set as σ̃ = 0.1, κ̃ = 0.02, and Φ = 1.
The results are shown in Fig. 1. Here, we find that the
execution speed with small t becomes larger when λ is
large. This is because a large λ implies that the trader
is risk averse and wants to quickly liquidate the security
to avoid volatility risk.

4. Concluding remarks

In this study, we studied the generalized AC model
while considering trading volume. Here, we showed that,

Fig. 1. The forms of optimal strategies (ζt)t of (10) with the
arcsine cumulative trading volume process; the horizontal axis

shows time, t; the vertical axis is ζt.

with some standard settings, the VWAP execution strat-
egy is the optimal strategy for a risk-neutral trader.
When considering adaptive strategies, we obtained our
result only when the trading volume process follows a ge-
ometric Brownian motion. Studying more general cases
of adaptive optimization problems is an area of future
research.
In this study, we only considered volume-dependent

temporary MI functions. Therefore, it remains to study
the case in which the permanent MI function depends
on the trading volume.
As mentioned in Remark 7, when the trader is risk

neutral, there are examples other than the AC-based
model in which the TWAP strategy is optimal. There-
fore, it would also be interesting to investigate whether
the optimal strategy is a VWAP strategy in the model
of [6, 9] by explicitly introducing trading volume pro-
cesses so that the time parameter is replaced by “volume
time (stochastic clock).”
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