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Abstract

In this article, we deal with the iterative methods for solving unsymmetric linear systems,
especially BiCGSTAB. The introduced parameter in BiCGSTAB at each iteration is selected
to minimize the 2-norm of the residual vector. Here, we suggest another way to select the
parameter by the idea of weighting used in Weighted GMRES. By our procedure, more im-
portance is assigned to the larger entry of the residual vector so that faster convergence can
be expected. In numerical experiments, it is shown that our procedure is efficient compared
with the original BiCGSTAB.
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1. Introduction

We are concerned with the numerical solution of the
unsymmetric linear system

Ax = b,

where A ∈ Rn×n is the coefficient matrix, x ∈ Rn and
b ∈ Rn are the unknown vector and the right-hand side
vector respectively.
Iterative methods based on the Krylov subspace, nor-

mally called Krylov subspace methods, are very popular
for large and sparse linear systems which arise in real-
life applications [1, 2]. In this article, we will focus on
BiCGSTAB [3], which is one of the efficient Krylov sub-
space methods, for solving the unsymmetric linear sys-
tems. BiCGSTAB is the product type method based on
BiCG [4], where the polynomial of GMRES(1) is used
as the so-called stabilization polynomial.
The algorithm of BiCGSTAB consists of a BiCG part

and a MR part. Some techniques have been proposed for
improving the MR part of BiCGSTAB. One strategy is
to improve the stability of the inner product in the BiCG
part [5]. Another strategy is to accelerate the conver-
gence of the MR part like BiCGSTAB(ℓ) [6]. In order to
improve the convergence of the MR part, BiCGSTAB(ℓ)
uses the polynomial of GMRES(ℓ) as the stabilization
polynomial instead of the polynomial of GMRES(1). Us-
ing more efficient polynomial, BiCGSTAB(ℓ) achieves
better performance than BiCGSTAB. In this article, we
try to improve the convergence of the MR part in a dif-
ferent way from BiCGSTAB(ℓ) by applying the idea pro-
posed in Weighted GMRES [7].
In Section 2 and Section 3, we give a summary of

BiCGSTAB and Weighted GMRES. Our idea is ex-
plained in Section 4 and a corresponding algorithm is

also given. The numerical examples are shown in Sec-
tion 5, and finally the conclusion is given in Section 6.

2. BiCGSTAB

Let r ∈ Rn, the Krylov subspace is defined as

Ki(A, r) = span{r, Ar, A2r, . . . , Ai−1r}.

Krylov subspace methods build up the Krylov subspaces
and look for a good approximation within the Krylov
subspaces.
BiCG has been proposed by Fletcher for unsymmet-

ric linear system, and the basic idea was originally used
by Lanczos [8] to compute eigenvalues of the symmetric
matrix. It constructs bi-orthogonal bases for the Krylov
subspaces corresponding to A and AT by the two-sided
Lanczos procedure to approximate the solution of the
linear system. BiCG requires multiplication by both A
and AT on every iteration. In some applications, we only
have matrix-vector product of A as a function. In that
case BiCG is not applicable.
Let x0 be the initial guess, and r0 = b − Ax0. The

approximate solution of the Krylov subspace method can
be written as

xi = x0 + zi,

where zi ∈ Ki(A, r0). The corresponding residual vector
can be written as

ri = b−Axi = r0 −Azi ∈ Ki+1(A, r0).

This means that we can consider the residual vector of
Krylov subspace methods as the product of a polynomial
of A and the initial residual vector r0.
For BiCG, we can define the residual vector as

rBiCG
i = φi(A)r0,
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Algorithm 1 BiCGSTAB

1: Choose an initial guess x0; r0 = b−Ax0

2: Choose r̃, for example, r̃ = r0
3: for i = 1, 2, . . . do
4: ρi−1 = (r̃, ri−1)
5: if ρi−1 = 0 then
6: method fails
7: end if
8: if i = 1 then
9: pi = ri−1

10: else
11: βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
12: pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)
13: end if
14: vi = Api

15: αi = ρi−1/(r̃,vi)
16: s = ri−1 − αivi

17: If ∥s∥2 is small enough: xi = xi−1+αipi and stop
18: t = As
19: ωi = (t, s)/(t, t)
20: if ωi = 0 then
21: method fails
22: end if
23: xi = xi−1 + αipi + ωis
24: ri = s− ωit
25: Check convergence, continue if necessary
26: end for

where φi(A) is a polynomial of A of degree i. In [3], van
der Vorst redefined the residual vector rBiCGSTAB

i as

rBiCGSTAB
i = Qi(A)r

BiCG
i = Qi(A)φi(A)r0, (1)

where Qi(A) is a polynomial of degree i, and defined as

Qi(A) = (I − ωiA)Qi−1(A), Q0(A) = I,

where I is the identity matrix. The parameter ωi is se-
lected to minimize the 2-norm of the residual rBiCGSTAB

i

ωi = arg min
ω∈R

∥(I − ωA)Qi−1(A)φi(A)r0∥2. (2)

By this way of defining, an algorithm called BiCGSTAB
(given in Algorithm 1) can be derived. It consists of the
BiCG part for updating rBiCG

i , and the MR part for
minimizing the 2-norm of rBiCGSTAB

i . BiCGSTAB is ex-
pected to have more stable convergence behaviour than
BiCG. Also there is an advantage that it does not need
the operation of the transpose of the matrix. For the
detailed derivation of BiCGSTAB, as well as BiCG and
the basic Krylov subspace theorems, one can refer to a
comprehensive book by Saad [9].

3. Weighted GMRES

Minimizing the 2-norm of the residual in BiCGSTAB
may be considered as the most natural way. However, it
is not always the best way for the fast convergence. By
making use of the weighting technique used in Weighted
GMRES, it is possible to gain faster convergence for
BiCGSTAB. To explain our idea, first we give a brief
description of Weighted GMRES.

Algorithm 2 GMRES(m)

1: Choose an initial guess x0, let r0 = b − Ax0, β =
∥r0∥2, and v1 = r0/β

2: Construct the basis of Krylov subspace Vm by
the Arnoldi procedure starting with v1

3: Define the Henssenberg matrix H(m+1)×m

4: Compute y by minimizing ∥βe1 −Hiy∥2
5: Obtain the approximate solution xm = x0 + Vmy
6: Check convergence, restart if necessary: set x0 = xm

and r0 = rm

Algorithm 3 Weighted GMRES

1: Choose an initial guess x0, let r0 = b−Ax0

2: Choose the vector d such that ∥d∥2 =
√
n, let D =

diag(d), set β̃ = ∥r0∥D and ṽ1 = r0/β̃

3: Construct the D-orthonormal basis Ṽm by
the weighted Arnoldi’s procedure starting with ṽ1

4: Define the Henssenberg matrix H̃(m+1)×m

5: Compute y by minimizing ∥β̃e1 − H̃my∥2
6: Obtain the approximate solution xm = x0 + Ṽmy
7: Check convergence, restart if necessary: set x0 = xm

and r0 = rm

Definition 1 Let u = [u1, u2, . . . , un]
T and v =

[v1, v2, . . . , vn]
T be two vectors in Rn, and di be a positive

scalar. Then the D-scalar of u and v is

(u,v)D ≡ vTDu =
n∑

i=1

diuivi,

where di is the diagonal entry of the diagonal matrix

D = diag(d1, d2, . . . , dn). (3)

The D-norm is defined associated with the inner product
as

∥u∥D ≡
√
(u,u)D =

√
uTDu =

√√√√ n∑
i=1

diu2
i .

Notice that if we let D = I, then the D-norm is equiv-
alent with the 2-norm:

∥u∥D
D=I−−−→

√
uTIu = ∥u∥2.

The D-norm defined above was applied by Essai [7] to
improve the convergence of GMRES [10], whose algo-
rithm is called Weighted GMRES.
GMRES constructs an orthonormal basis Vm ∈ Rn×m

and a Hessenberg matrix Hm ∈ R(m+1)×m by the
Arnoldi procedure for the Krylov subspace. The approx-
imate solution is obtained by minimizing the 2-norm of
the residual vector:

min
y∈Rm

∥r0 −AVmy∥2 = min
y∈Rm

∥βe1 −Hmy∥2.

A restart version of GMRES can be summarized as Al-
gorithm 2.
While in GMRES the 2-norm of the residual vector is

minimized, Weighted GMRES minimizes the D-norm of
the residual over the Krylov subspace at every restart.
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Let Ṽm be a D-orthonormal basis and H̃m the corre-
sponding Hessenberg matrix. Then the approximate so-
lution of Weighted GMRES can be computed as

min
y∈Rm

∥r0 −AṼmy∥D = min
y∈Rm

∥β̃e1 − H̃my∥2.

By minimizing the D-norm, different entries of the resid-
ual vector will get different emphasis. The algorithm of
Weighted GMRES can be summarized as Algorithm 3.

4. Applying D-norm minimization

As shown in Section 3, the basic idea of Weighted
GMRES is to use D-norm minimization instead of 2-
norm minimization. By changing the weight matrix D
(3) corresponding to the current residual in each restart,
Weighted GMRES shows better convergence behaviour
than GMRES(m) [7].
In BiCGSTAB, the 2-norm of the residual is mini-

mized at every iteration. Based on the idea of Weighted
GMRES, we propose minimizing the D-norm of the
residual in BiCGSTAB instead of 2-norm. By changing
the weight matrix D in each iteration corresponding to
the current residual similar as Weighted GMRES, we ex-
pect that overall convergence behaviour of BiCGSTAB
will be improved.
To minimize the D-norm of the residual, first we

rewrite (1) as

rBiCGSTAB
i = s− ωit,

where s = Qi−1(A)φi(A)r0 and t = As. In order to min-
imize the D-norm of the residual rBiCGSTAB

i , we should
let the parameter ωi to be

ωi = arg min
ω∈R

∥s− ωt∥D =
(t, s)D
(t, t)D

. (4)

We give the algorithm of BiCGSTAB applied with D-
norm minimization of the residual vector in Algorithm 4.
Notice that the matrix D can be changed at every iter-
ation.
For the diagonal entries of the matrix D, there is no

definite rule on choosing. One possibility is to let

D = diag(d), d =
√
n

|ri|
∥ri∥2

, (5)

where |ri| ≡ [|ri(1)|, |ri(2)|, . . . , |ri(n)|]T. This is imple-
mented in Weighted GMRES, which realizes the idea of
giving greater weight on larger entry. We will also accept
this kind of definition in our numerical experiment.
The storage and computational cost required for im-

plementing our algorithm does not increase much com-
pared with the original BiCGSTAB algorithm. It needs
additional cost of determining matrix D, one more vec-
tor to store the diagonal entries ofD and two more point-
wise vector multiplications to compute the parameter ωi.
Notice that if the parameter ωi becomes zero during

the iteration, then BiCGSTAB fails to converge. And
even if it does not become zero exactly, it also causes a
numerical instability when it is close to zero because of
the finite precision calculation. So it is applicable to com-
pute ωi by (4), when (2) produces zero or small value.

Algorithm 4 BiCGSTAB with D-norm minimization

1: Choose an initial guess x0; r0 = b−Ax0

2: Choose r̃, for example, r̃ = r0
3: for i = 1, 2, . . . do
4: ρi−1 = (r̃, ri−1)
5: if ρi−1 = 0 then
6: method fails
7: end if
8: if i = 1 then
9: pi = ri−1

10: else
11: βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
12: pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)
13: end if
14: vi = Api

15: αi = ρi−1/(r̃,vi)
16: s = ri−1 − αivi

17: If ∥s∥2 is small enough: xi = xi−1+αipi and stop
18: t = As
19: Determine d, and let D = diag(d)
20: ωi = (t, s)D/(t, t)D
21: if ωi = 0 then
22: method fails
23: end if
24: xi = xi−1 + αipi + ωis
25: ri = s− ωit
26: Check convergence, continue if necessary
27: end for

5. Numerical experiment

In this section we show the results of some numeri-
cal examples solved by our algorithm (Algorithm 4) and
the BiCGSTAB algorithm (Algorithm 1) without pre-
conditioners. Since our chief concern is the convergence
behaviour, the CPU time is not shown. The additional
computational cost of our algorithm is negligible com-
pared with the original one.
All the tested real and unsymmetric matrices are from

The University of Florida Sparse Matrix Collection [11].
The initial guess x0 is chosen to be the zero vector, the
vector r̃ = r0, and the right-hand side vector is set as
b = [1, 1, . . . , 1]T. The stopping criterion is chosen to be
∥ri∥2/∥b∥2 ≤ 10−10. The matrix D is determined by (5),
and all the computations were performed in MATLAB
2013b.
Fig. 1 illustrates the histories of the relative residual

of the matrix ‘cavity01’. The straight line represents the
result computed by our algorithm, the star line the orig-
inal BiCGSTAB. We can see that our algorithm com-
putes the residual more steadily than BiCGSTAB which
fluctuates during the iteration. Fig. 2 shows the result
of the matrix ‘dw2048’. Again our algorithm needs less
iterations to converge, though the difference is not so
obvious in contrast to the previous problem.
We give the computation results of all the tested ma-

trices in Table 1. From the table, we can see that for
some matrices, BiCGSTAB fails to converge to the de-
sired accuracy while our algorithm obtains the approxi-
mate solutions. The efficiency of D-norm is not guaran-
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Table 1. Test Results. ‘Iter’: iterations; ‘RR’: relative residual; ‘TRR’: true relative residual ∥b−Axi∥2/∥b∥2; ‘-’: not converge.

Matrix n nonzeros kind
Our algorithm BiCGSTAB

Iter RR TRR Iter RR TRR

cage6 93 785 directed weighted graph 30 9.1e-11 9.1e-11 - 2.0e-04 2.0e-04

cavity01 317 7,280 computational fluid dynamics problem 307 3.0e-11 3.0e-11 471 9.9e-11 9.9e-11
circuit 1 2,624 35,823 circuit simulation problem 863 9.6e-11 9.6e-11 1,757 7.7e-11 7.7e-11
ck400 400 2,860 2D/3D problem 483 8.7e-11 8.7e-11 476 6.2e-11 6.2e-11

dw2048 2,048 10,114 electromagnetics problem 1,873 9.5e-11 9.5e-11 2,065 9.5e-11 9.5e-11
gre 185 185 975 directed weighted graph 571 8.8e-11 8.7e-11 - 5.2e-02 5.2e-02
Pd 8,081 13,036 counter-example problem 189 3.9e-11 1.2e-08 - 5.6e-07 5.6e-07
poisson3Db 85,623 2,374,949 computational fluid dynamics problem 243 8.2e-11 8.2e-11 284 9.1e-11 9.1e-11

rajat09 24,482 105,573 circuit simulation problem 4,199 8.6e-11 8.6e-11 5,146 2.4e-11 2.4e-11
thermal 3,456 66,528 thermal problem 19 5.7e-11 5.7e-11 18 5.5e-11 5.5e-11
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Fig. 1. Histories of relative residual for ‘cavity01’. –: BiCGSTAB

with D-norm minimization; −∗: BiCGSTAB.
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Fig. 2. Histories of relative residual for ‘dw2048’. –: BiCGSTAB
with D-norm minimization; −∗: BiCGSTAB.

teed. As for ‘thermal’ and ‘ck400’ , the iterations needed
to converge are almost the same.

6. Conclusions

In this article, we have proposed a new algorithm.
From the numerical experiments we are convinced that
it is meaningful to apply the D-norm in minimizing the
residual vector instead of the 2-norm in BiCGSTAB,
though the efficiency is not universal. Our research shows
that for the overall convergence behaviour, the 2-norm
minimization may not be the best choice for BiCGSTAB.
Our idea of D-norm minimization can also be applied

to BiCGSTAB(ℓ) and GPBiCG [12]. However, from our
preliminary experiments, the current selection of D does
not show much improvement; the details are not shown
here due to the limitation of the space. Appropriate se-
lection of D will be one of our future works. For the

improvement of the block version of BiCGSTAB, as in-
dicated by Weighted Block GMRES [13], is also under
consideration.
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