
JSIAM Letters Vol.7 (2015) pp.49–52 c⃝2015 Japan Society for Industrial and Applied Mathematics J S I A MLetters

Combinatorial relaxation algorithm for the

entire sequence of the maximum degree of minors

in mixed polynomial matrices

Shun Sato1

1 Graduate School of Information Science and Technology, the University of Tokyo, Bunkyo-ku,
Tokyo 113-8656, Japan

E-mail shun sato mist.i.u-tokyo.ac.jp

Received December 26, 2014, Accepted March 28, 2015

Abstract

Iwata–Takamatsu (2013) showed that the maximum degree of minors in mixed polynomial
matrices for a specified order can be computed by combinatorial relaxation type algorithm. In
this letter, based on their algorithm, we propose an efficient combinatorial relaxation algorithm
for computing the entire sequence of the maximum degree of minors. In our previous work,
we dealt with a similar problem for rational function matrices, where the efficiency derived
from the discrete concavity of valuated bimatroids. We follow the same line of discussion; but,
technical details are different due to special characteristics of mixed matrices.

Keywords combinatorial relaxation, degree of minor, valuated bimatroid, discrete concav-
ity, mixed matrix

Research Activity Group Discrete Systems

1. Introduction

The concept of mixed matrices [1] was introduced as a
mathematical tool for description of physical systems. A
mixed matrix contains two kinds of numbers as follows:

• Accurate Numbers (Fixed Constants)
They frequently represent conservation laws, and
are precise in values. These numbers should be
treated numerically.

• Inaccurate Numbers (Independent Parameters)
They often denote physical characteristics and are
not precise in values. Since they can be assumed to
be independent, these numbers should be treated
combinatorially as nonzero parameters.

Let A(x) be a mixed polynomial matrix over certain
fields (which we will define later). R and C denote the
row-set and column-set of A, respectively. deg f denotes
the degree of a polynomial function f . We define the
maximum degree of minors of order k as

δk(A) := maxI⊆R,J⊆C {deg detA[I, J] | |I| = |J | = k} ,

where A[I, J] denotes the submatrix of A with I ⊆ R
and J ⊆ C. We set δ0(A) = 0. The entire sequence of
maximum degree of minors {δk(A)}rankA

k=0 can be used
for computing the Smith–McMillan form at infinity [1],
which is often used in control theory. Thus we aim to de-
velop an efficient algorithm for computing {δk(A)}rankA

k=0 .
The maximum degree of minors can be defined on

rational function matrices, which include mixed poly-
nomial matrices as special cases. Murota [2] showed
that the maximum degree of minors on rational func-
tion matrices for a specified order can be computed
by the general framework of “combinatorial relax-

ation”(Murota [3]). Our previous work [4] then showed
an efficient combinatorial relaxation type algorithm for
finding the entire sequence of the maximum degree of mi-
nors in rational function matrices. On the other hand, for
mixed polynomial matrices, Iwata–Takamatsu [5] gave
an algorithm for a specified order. In this letter, we ex-
tend the idea of [4] to mixed polynomial matrices and
develop a combinatorial relaxation type algorithm for
finding the entire sequence of the maximum degree of
minors. The efficiency of the proposed algorithm is based
on two theorems (Theorems 5 and 6) concerning “tight-
ness” of combinatorial relaxations.

2. Preliminaries
2.1 Mixed Polynomial Matrices and δk(A)’s
We define mixed polynomial matrices (see, e.g., [1]). In

the definition below, fields K and F represent accurate
and inaccurate numbers, respectively; the coefficients of
Qij(x) correspond to fixed constants, and the coefficients
of Tij(x) to independent parameters.

Definition 1 (Mixed Polynomial Matrices) Let
K be a subfield of a field F . A polynomial matrix M(x)
is called a mixed polynomial matrix over (K,F) if M(x)
can be represented as M(x) = Q(x) + T (x), where Q(x)
and T (x) satisfy the following conditions:

(MP-Q) Q(x) is a polynomial matrix over K.
(MP-T) T (x) is a polynomial matrix over F , and the

set T of nonzero coefficients of T (x) is algebraically
independent over K.

A mixed polynomial matrix M(x) is called a layered
mixed (LM)-polynomial matrix if it is in the form

M(x) =

[
Q(x)
T (x)

]
, (1)

– 49 –

JSIAM Letters Vol. 7 (2015) pp.49–52 Shun Sato

where Q(x) and T (x) satisfy (MP-Q) and (MP-T).
Finding the maximum degree of minors in a mixed

polynomial matrix can be reduced to a corresponding
problem on an LM-polynomial matrix. Let us start with
an m×n mixed polynomial matrix Ã(x) = Q̃(x)+ T̃ (x)
with R̃ and C̃ being the row-set and the column-set.
Then, we can associate Ã with an LM-polynomial matrix

A(x) =

[
diag[xd1 , . . . , xdm] Q̃(x)

diag[t1x
d1 , . . . , tmxdm] T̃ (x)

]
, (2)

where di := maxj∈C deg Q̃ij , and ti is a new parameter

for all i ∈ R̃. We define R and C as the row-set and
column-set of A. We define δLMk (A) as follows:

δLMk (A)

:= max
I⊆RT ,J⊆C

{deg detA[I ∪RQ, J] | |I|= |J | −m=k},

where RQ ⊆ R and RT ⊆ R denote the row-subsets

corresponding to Q̃ and T̃ . Then, δk(Ã) = δLMk (A) −∑m
i=1 di holds for k = 1, . . . , r [6], and the problem with

δk(Ã)’s reduces to δLMk (A)’s (r := rank Ã = rankA−m).

2.2 Valuated Bimatroid
A valuated bimatroid is a triple (R,C,w), where R

and C are disjoint finite sets and w : 2R × 2C → R ∪
{−∞} is a map satisfying a certain exchange axiom (see,
e.g., [1,7]). The value ρ ∈ Z denotes the maximum value
of |I| = |J | such that (I, J) ⊆ R×C and w(I, J) > −∞.
We define Sk ⊆ 2R × 2C and δk ∈ R as follows:

Sk = {(I, J) | |I| = |J | = k, I ⊆ R, J ⊆ C},

δk = max{w(I, J) | (I, J) ∈ Sk}.

Proposition 2 ([7]) δk−1 + δk+1 ≤ 2δk holds for k =
1, 2, . . . , ρ− 1.

The set Mk is defined as {(I, J) ∈ Sk | w(I, J) = δk}.
Proposition 3 ([7]) For any (Ik, Jk) ∈ Mk with 1 ≤
k ≤ ρ − 1, there exist (Il, Jl) ∈ Ml (0 ≤ l ≤ ρ, l ̸= k)
such that Il−1 ⊆ Il and Jl−1 ⊆ Jl (1 ≤ l ≤ ρ).

It is known that w(I, J) := deg det Ã[I, J] defines a
valuated bimatroid [1, 7]. Hence, {δk(Ã)}, as well as
{δLMk (A)}, is concave by Proposition 2, and the maxi-
mizers of w have a nested structure by Proposition 3.

2.3 Combinatorial Relaxation of δLMk (A)
The description of this section is based on [5]. Let A(x)

be an LM-polynomial matrix defined by (2). We define
G(A) = (R∪C,E(A), c) as a bipartite graph associated
with A(x), where the arc set E(A) and the weight c :
E(A) → Z are defined as follows:

E(A) := {(i, j) | i ∈ R, j ∈ C, Aij(x) ̸= 0} , (3)

c(i, j) := degAij ((i, j) ∈ E(A)). (4)

For a matching M on the bipartite graph G(A), we
define ∂+M := ∂M ∩ R and ∂−M := ∂M ∩ C, where
∂M denotes the set of incident vertices of M . Then, let
δ̂LMk (A) be the weight of a maximum weight (m + k)-
matching M such that RQ ⊆ ∂+M in G(A), i.e.,

δ̂LMk (A) := max

{ ∑
e∈M

c(e)

∣∣∣∣M : a matching in G(A),

|M | = m+ k, RQ ⊆ ∂+M

}
.

If there is no (m + k)-matching in G(A), we put

δ̂LMk (A) = −∞. Then, δ̂LMk (A)’s play the role of a combi-

natorial relaxation of δLMk (A)’s, and δLMk (A) ≤ δ̂LMk (A)
holds [2]. Moreover, for RQ ⊆ I ⊆ R and J ⊆ C such
that |I| = |J |, we define

ŵ(I, J) := max{c(M) | M : a matching in G(A),

∂M = I ∪ J},

and for the other case, we define ŵ(I, J) = −∞. This
ŵ(I, J), as well as w(I, J), defines a valuated bimatroid.
Therefore, Propositions 2 and 3 hold for ŵ.
We can test whether δLMk (A) = δ̂LMk (A) (which we call

“tight”) holds or not without knowing δLMk (A) itself by
utilizing the duality of linear programming as Proposi-
tion 4 below shows. The dual of the linear programming
problems associated with the weighted bipartite match-
ing problem discussed above is given as follows:

DLP(A, k) : min.
∑
i∈R

pi +
∑
j∈C

qj + (m+ k)t

s.t. pi + qj + t ≥ cij ((i, j) ∈ E(A)),

pi ≥ 0 (i ∈ RT), qj ≥ 0 (j ∈ C).

DLP(A, k) has an integral optimal solution, and the op-

timal value is equal to δ̂LMk (A). For a feasible solution
(p, q, t), we define the active rows I∗ ⊆ R, the active
columns J∗ ⊆ C, and the tight coefficient matrix A∗ as

I∗ = RQ ∪ {i ∈ RT | pi > 0} , J∗ = {j ∈ C | qj > 0} ,

A∗
ij = lim

x→∞
x−pi−qj−tAij(x). (5)

Note that the right-hand side of (5) is a bounded con-
stant because of pi + qj + t ≥ cij = degAij , and that
computing the rank of A∗ is relatively easy (but it needs
the algorithm for the rank of an LM-matrix [1]).

Proposition 4 ([2]) Let (p, q, t) be an optimal dual
solution. The following three conditions are equivalent:

• δLMk (A) = δ̂LMk (A) holds;

• There exist I ⊇ I∗ and J ⊇ J∗ such that it holds
rankA∗[I, J] = |I| = |J | = m+ k;

• The following four conditions hold:

(r1) rankA∗[R,C] ≥ m+ k,
(r2) rankA∗[I∗, C] = |I∗|,
(r3) rankA∗[R, J∗] = |J∗|,
(r4) rankA∗[I∗, J∗] ≥ |I∗|+ |J∗| − (m+ k).

3. Proposed Algorithm

In this section, we propose an algorithm to compute
δLMk (A)’s for an LM-polynomial matrix A(x) defined by
(2). For the sake of the algorithm description, let us here
suppose that A(x) is a Laurent polynomial matrix. Here,
a rational function f is said to be a Laurent polynomial
function if there exists an integer N such that xNf(x)
is a polynomial function (−ord f denotes the minimum
among such N ’s). We define

dmax = max
i,j

degAij , dmin = min
i,j

ordAij .

– 50 –

JSIAM Letters Vol. 7 (2015) pp.49–52 Shun Sato

3.1 Theorems to Improve Efficiency

We show two theorems concerning tightness that form
the basis of our algorithm. These theorems can be proved
similarly as the corresponding theorems in [4].

Theorem 5 Suppose that δLMk (A) = δ̂LMk (A) holds and
(p, q, t) is a common optimal dual solution of DLP(A, k)

and DLP(A, k + 1). Then, δLMk+1(A) = δ̂LMk+1(A) =

δLMk (A) + t if and only if rankA∗ > m+ k, where A∗ is
the tight coefficient matrix defined by (5).

Theorem 5 allows us to check if δLMk+1(A) = δ̂LMk+1(A)
by computing rankA∗ only. This value, r∗ := rankA∗,
is always greater than or equal to m + k. Furthermore,
when r∗ > m+k+1, due to the next theorem, we obtain
all of δLMk+1(A), . . . , δLMr∗−m(A) at the same time, i.e., we

can skip the computation of δLMk+2(A), . . . , δLMr∗−m(A).

Theorem 6 Under the assumptions of Theorem 5 and
m+ k < r∗, the following equalities and inequality hold:

δLMl (A)= δ̂LMl (A)=δLMk (A) + (l − k)t (k<l≤r∗ −m),

δLMl (A)<δLMk (A) + (l − k)t (l = r∗ −m+ 1).

3.2 The Outline of the Proposed Algorithm

The outline of the proposed algorithm is as follows.
Outline of the Proposed Algorithm

Step 0: Compute δLM0 (A) and set k := 0.

Step 1: Find a common optimal dual solution (p, q, t)
of DLP(A, k) and DLP(A, k + 1). If t < (m + k +
1)dmin − δLMk (A) holds, then halt.

Step 2: Test for the tightness, i.e., whether δLMk+1(A) =

δ̂LMk+1(A) or not, by using (p, q, t) and the tight coef-
ficient matrix A∗ (Theorem 5). If the equality holds,
go to Step 4. Otherwise, go to Step 3.

Step 3: Modify A to A′ satisfying δ̂LMk+1(A
′) < δ̂LMk+1(A)

and δLMk+1(A
′) = δ̂LMk+1(A), and go back to Step 1.

Step 4: Output δLMk+1(A), . . . , δ
LM
r∗−m(A) (Theorem 6),

update k := r∗ −m and go back to Step 1.

For Step 0, the initialization, M0 is defined as the
unique matching on submatrix diag[xd1 , . . . , xdm] of A
(δLM0 (A) =

∑m
i=1 di). We set I∗0 := RQ, J

∗
0 := ∂−M0 and

k := 0. The other steps are discussed in Section 3.3–3.6.

3.3 Step 1: Construction of an Optimal Dual Solution

At every starting point of Step 1, the following condi-
tions hold as a result of the last iteration:

(1) deg detA[I∗k , J
∗
k] =

∑
(i,j)∈Mk

degAij = δLMk (A);

(2) RQ ⊆ I∗k = ∂+Mk, J
∗
k = ∂−Mk.

In actual computation, I∗k and J∗
k are not necessarily

stored because they can be obtained from Mk, which is
an (m + k)-matching on G(A) achieving δ̂LMk (A). They
are explicitly introduced here for a better presentation.
An optimal dual solution (p, q, t) of DLP(A, k) can be

constructed by solving the shortest paths problem on the
auxiliary graph GMk

(cf. [5]). In this step, we can adopt
“reweighting” using the latest optimal dual variable (see,
e.g., [8]).
Lemma 7 is an immediate corollary of [4, Lemma 2].

Lemma 7 Let (p, q, t) be the optimal dual solution of
DLP(A, k) obtained in Step 1. Then, (p, q, t) is an opti-
mal dual solution of DLP(A, k + 1).

Lemma 7 means that δ̂LMk+1(A) = δLMk (A) + t holds.

Since δ̂LMk+1(A) ≥ δLMk+1(A) ≥ (m+k+1)dmin holds for all

integer k < r, δ̂LMk+1(A) = δLMk (A) + t < (m+ k + 1)dmin

implies k = r. Therefore, if t < (m+k+1)dmin−δLMk (A)
holds, we can set rankA = m+ k and halt.

3.4 Step 2: Test for Tightness

Since Lemma 7 means that (p, q, t) is a common opti-
mal dual solution of DLP(A, k) and DLP(A, k + 1), we
can adopt Theorem 5 instead of Proposition 4 to test for
the tightness. Here, we need to compute the rank of an
LM-matrix A∗. We execute a slightly different version of
the algorithm stated in [1] to ensure Theorem 8 below.
The rank of an LM-matrix can be computed by solv-

ing the independent matching problem on a bipartite
graph G = (RT ∪ CQ, C;ET ∪ EQ), where CQ denotes
the copy of the column-set C and the sets of arcs are de-
fined as ET = {(i, j) | i ∈ RQ, j ∈ C,A∗

ij ̸= 0} and EQ =
{(jQ, j) | j ∈ C}. We can solve this problem by utiliz-
ing augmenting paths in auxiliary graph GM = (V,E),
where V = RT ∪CQ ∪C and E = ET ∪EQ ∪E+ ∪M◦.
Here, E+ represents the structure of the linear matroid
with respect to A∗[RQ, C]. The difference from [1] ap-
pears only in the step of initialization.

(i) We set base[i] = j for (i, j) ∈ Mk such that i ∈ RQ,
and also set M◦ := {(j, i) | (i, j) ∈ Mk, i ∈ RT } ∪
{(j, jQ) | i ∈ RQ, base[i] = j}.

(ii) Then, we construct a constant matrix P by repeat-
ing the following procedure for i = 1, 2, . . . ,m: we
choose (i, j) ∈ Mk ∩ (RQ × C) in descending order
of pi, and conduct the row elimination for all rows
taking A∗

ij as the pivot. At the end of the procedure,
we obtain a constant matrix P such that

P =
[

Im U
]
= SA∗[RQ, C] (6)

holds, where S is a nonsingular constant matrix
which represents the row eliminations (U is a con-
stant matrix created by the procedure).

After the procedure (i) and (ii), we execute the algo-
rithm for the rank of LM-matrices [1]. At the end of this
algorithm, P satisfies

rank

[
P

A∗[RT , C]

]
= term-rank

[
P

A∗[RT , C]

]
, (7)

where term-rankA is defined as the maximum matching
on G(A) (see, e.g., [1]).

3.5 Step 3: Matrix Modification

At the beginning of Step 3, the relation (7) holds and
we have a constant matrix S satisfying (6). Then, we
define S̃(x) and S(x) as follows:

S̃(x)=

[
S(x) O
O I

]
=diag(x; pR)

[
S O
O I

]
diag(x;−pR).

We modify the matrix A(x) to A′(x) as follows:

A′(x) = S̃(x)A(x) =

[
S(x)A[RQ, C](x)

A[RT , C](x)

]
. (8)

– 51 –

JSIAM Letters Vol. 7 (2015) pp.49–52 Shun Sato

This modification makes sense, as stated in Theorem 8.

Theorem 8 The matrix A′(x) defined in (8) has the
following four properties: (1) δLMl (A′) = δLMl (A) for
l = 0, 1, . . . , r; (2) deg detA′[I∗k , J

∗
k] = δLMk (A′); (3)

δ̂LMk (A′) = δLMk (A′); (4) δ̂LMk+1(A
′) < δ̂LMk+1(A).

Proof (1) It is sufficient to show that S̃(x) is biproper.
This claim holds by construction of S.
(2) By construction of A′, we obtain

deg detA′[RQ ∪ I∗k , J
∗
k] = deg detA[RQ ∪ I∗k , J

∗
k].

Since the right-hand side is equal to δLMk (A), this equal-
ity means that the property (2) holds.
(3) An optimal solution (p, q, t) of DLP(A, k) is a fea-
sible solution of DLP(A′, k). Here, A∗ and A′∗ denote
the tight coefficient matrices of A and A′ with respect
to (p, q, t). Then, the following equality holds:

A′∗ =

[
S O
O I

]
A∗.

This means that term-rankA′∗[I∗k , J
∗
k] = m + k holds.

Hence, by [5, Lemma 5], (p, q, t) is an optimal solution
of DLP(A′, k). Moreover, (7) and Proposition 4 mean

that δ̂LMk (A′) = δLMk (A′).
(4) We show term-rankA′∗[R,C] = rankA′∗[R,C] =
m+ k in the discussion above. Hence, (p, q, t) is not op-
timal in DLP (A′, k + 1) by [5, Lemma 5]. (QED)

3.6 Step 4: Outputs and Updates

Recall that the task of Step 4 is to output δLMl (A)’s
(l = k + 1, . . . , r∗ −m) in view of Theorem 6, and then
we go back to Step 1. But in order to start the process
of Step 1, we need the corresponding matching M =
Mr∗−m such that∑

(i,j)∈M

degAij = deg detA[∂+M,∂−M] = δLMr∗−m(A)

holds. The key ingredient for obtaining this is the com-
putation of I∗r∗−m = ∂+Mr∗−m and J∗

r∗−m = ∂−Mr∗−m,
which can be obtained simultaneously in the calculation
of rankA∗ described in Section 3.4 as I∗r∗−m = ∂M◦∩R,
J∗
r∗−m = ∂M◦ ∩C. Then, Mr∗−m is a maximum weight

bipartite matching on G = (I∗r∗−m∪J∗
r∗−m, E, γ), where

E = E(A) ∩ (I∗r∗−m × J∗
r∗−m). We can obtain Mr∗−m

efficiently by augmenting paths.

4. Complexity Analysis

The time complexity of the proposed algorithm can
be analyzed as in Theorem 9, following the same line of
discussion in Iwata–Takamatsu [5]. This theorem can be
proved similarly as [4, Theorem 4].

Theorem 9 The proposed algorithm runs in
O(dnr(n+m2+dmω−1r)) time, where d := dmax−dmin.

This complexity of the proposed algorithm is almost
the same as in the naive algorithm, which simply repeats
the algorithm [5] for a specified order (even a little bit
worse than the naive one in special cases, e.g., very low
rank case m3−ω > dr). However, since the step of mod-
ification is seldom executed [5, Proposition 1], the time
complexity of the computation for rankA∗ is crucial. As

stated in Proposition 10 below, The number of iterations
of Step 2 is only (O(

√
dr) + s), whereas the naive one

computes the rank 4(r + s) times, where s denotes the
number of modifications. Hence, the proposed algorithm
might be faster if d and s are sufficiently small.

Proposition 10 Let A(x) be an LM-Laurent polyno-
mial matrix in the form of (2). Then, the proposed algo-
rithm executes Step 2 at most (f(d, r) + s) times, where
s denotes the number of modifications and f is defined
as

f(d, r) =

{⌊
−1+

√
8dr+1
2

⌋
(r ≥ 2d− 1)

r (r < 2d− 1)
. (9)

Proof If t denotes the number of iterations of Step 4,
Step 2 is executed (t + s) times. By the latter part of
Theorem 6, t is same as the number of k’s such that
δLMk+1(A) − δLMk (A) ̸= δLMk (A) − δLMk−1(A) holds, which
is less than f(d, r). Here, f(d, r) is upper bound of the
maximum number of n({ak}) among {ak} ∈ Xr

d , where
Xr

d ⊆ Zr+1 is the set of sequences {ak} such that a0 = 0,
ar ≥ 0 and ak+1−ak ≤ ak−ak−1 ≤ d (k = 1, . . . , r−1),
and n({ak}) is the number of k’s such that ak+1 − ak ̸=
ak−ak−1. To see this, we define N as an upper bound of
the maximum number of n({ak}) among {ak} ∈ Xr

d and
the sequence {bγk} for an integer γ as follows: bγk = dk for

k = 0, 1, . . . , γ−1 and bγk = d(γ−1)+
∑k

i=γ(d−(i−γ+1))
for k = γ, . . . , r. Then, for any {ak} ∈ Xr

d , there exists
{bγk} ∈ Xr

d such that n({ak}) = n({bγk}) for γ = r + 1−
n({ak}). Hence, we only have to deal with {bγk}’s and
we need to consider whether bγr ≥ 0 or not for some γ.
Therefore, N is equal to the maximum value of r−γ+1
such that bγr = d(γ − 1) +

∑r
i=γ(d − (i − γ + 1)) ≥ 0.

By introducing α := r− γ + 1, we obtain the equivalent
problem: maximize α subject to α2 + α − 2dr ≤ 0 and
1 ≤ α ≤ r. It means that N = f(d, r). (QED)

Acknowledgments

The author is grateful to Kazuo Murota for valuable
comments and also for anonymous reviewer’s comments.

References

[1] K. Murota, Matrices and Matroids for Systems Analysis,

Springer, Berlin, 2000.
[2] K. Murota, Combinatorial relaxation algorithm for the maxi-

mum degree of subdeterminants: computing Smith–McMillan
form at infinity and structural indices in Kronecker form,

Appl. Algebra Engrg. Comm. Comput., 6 (1995), 251–273.
[3] K. Murota, Computing Puiseux-series solutions to determi-

nantal equations via combinatorial relaxation, SIAM J. Com-

put., 19 (1990), 1132–1161.
[4] S. Sato, Combinatorial relaxation algorithm for the entire

sequence of the maximum degree of minors, METR2014-
23, (2014), http://www.keisu.t.u-tokyo.ac.jp/research/

techrep/data/2014/METR14-23.pdf.
[5] S. Iwata and M.Takamatsu, Computing the maximum degree

of minors in mixed polynomial matrices via combinatorial
relaxation, Algorithmica, 66 (2013), 346–368.

[6] K. Murota, On the degree of mixed polynomial matrices,
SIAM J. Matrix Anal. Appl., 20 (1999), 196–227.

[7] K. Murota, Finding optimal minors of valuated bimatroids,
Appl. Math. Lett., 8 (1995), 37–42.

[8] N.Tomizawa, On some techniques useful for solution of trans-
portation network problems, Networks, 1 (1971), 173–194.

– 52 –

