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Abstract

In dislocation dynamics, dislocations can be regarded as open plane curves evolving according
to the curvature flow with an external force. In the present paper, evolving curves connecting
two circular obstacles are treated from both mathematical and numerical viewpoints: An
exact solution curve is constructed with sliding endpoints along obstacles, and all important
and typical phenomena including touching-splitting, non-touching and Orowan island can be
treated numerically.
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1. Introduction

Dislocation is a line defect of the crystalline lattice.
Along the dislocation curve the regularity of the crystal-
lographic arrangement of atoms is disturbed. The dislo-
cation can be represented by a curve closed inside the
crystal or by a curve ending on the crystal surface. The
presence of dislocations and their interaction strongly
influence many of material properties. Therefore, there
is a strong interest in understanding and modeling their
behavior without performing expensive experiments.
The mathematical model of the dislocation dynamics

is based on the curvature flow equation with forcing term
BV = F − T k for open or closed curves, where V is the
normal velocity of the curve, k is the curvature, F is the
external forcing term, B is the drag coefficient and T is
the line tension [1]. In a uniform or ideal crystal case, all
parameters B,F , T can be taken as positive constants,
then, under a suitable rescaling in time, the evolution
equation can be rewritten as

V = C − k (1)

for a positive constant C. According to this evolution
law, the dislocation curves move toward circular obsta-
cles (strong precipitates), then they touch the obstacles
and bend in the direction, say v⃗, of a line perpendicu-
lar to the line connecting two obstacles [2]. See Fig. 1a.
The curves seem to move along the obstacle. Hence, the
evolving curve and the obstacle seem to have a common
tangent line at the touching point. In the present paper,
we call this observation tangential criterion. See Fig. 2.
Between two obstacles, the similar bending phenomena
may occur starting from the opposite two sides. As a re-
sult, one can observe the following two kinds of phenom-
ena: two evolving curves touch each other (Fig. 1a, left-
hand side), or converge to some curves without touching
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Fig. 1. Dislocation line along precipitates. The touching-
splitting and non-touching phenomena are observed.

(Fig. 1a and 1b, right-hand side). In the former case, the
two curves touch and split (Fig. 1b, left-hand side).
In the present paper, the touching-splitting and non-

touching phenomena are treated from both mathemati-
cal and numerical points of view. In Section 2, to focus on
these phenomena, a local coordinates will be introduced
between two circular obstacles, that is, we will consider
evolving open curves with two endpoints moving along
each circle, and an exact solution will be constructed. To
the best of our knowledge, no one has studied evolving
curve connecting two circles; on the other hand, fixed-
endpoints case has been studied extensively by various
authors (e.g., [3–6]).
In Section 3, touching-splitting phenomena for planar
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Fig. 2. Tangential criterion: dislocation line touching a precipi-
tate.

R > C−1

R = C−1

R < C−1

Fig. 3. Behavior of the circular solution.

curves will be treated from a numerical point of view.
Under the so-called direct approach, we should estimate
the touching time of two curves. Usually two curves are
regarded touching each other, when the distance be-
tween them is less than a given tolerance. Such approach
can be called a priori numerical technique [7] and there
are essentially two difficult problems to solve: one, no
one knows a reasonable value of tolerance, and two, one
can not treat the case where two curves are very close
each other, but they never touch. On the other hand, in
our approach, when two curves touch or cross each other,
splitting operation is performed. Therefore, our idea is
simple and reliable, and the approach can be called a
posteriori numerical technique in this sense.

2. Exact solution for dislocation bowing

In the case of closed solution curves, it is easy to obtain
an exact circular solution with the radius R under the
evolution equation V = C−k, since we have V = dR/dt
and k = R−1. Solving dR/dt = C −R−1, we obtain the
exact solution

t = F (R(t)),

F (ρ) =
1

C

(
ρ−R(0) +

1

C
log

Cρ− 1

CR(0)− 1

)
, (2)

which satisfies the following proposition (see Fig. 3).

Proposition 1 We have the following properties:

• if R(0) > C−1, then R(t) → ∞ holds as t → ∞;

• if R(0) < C−1, then there exists T = F (0), such
that R(t) → 0 holds as t → T .

By using an arc of the above circle solution, we will
construct an exact solution of evolving open curve with
moving endpoints on given circles.
Let y = f(x, t) be a solution open curve. To construct

an exact solution we assume that the solution curve is
an arc of a circle with the radius R(t) and the center
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Fig. 4. Geometry settings.

(0, ξ(t)) as follows:

f(x, t) = ξ(t)−
√
R(t)2 − x2 (−d(t) < x < d(t)),

where the endpoints are (±d(t), h(t)) moving along two
prescribed circular obstacles, say O±, with the radius λ
and the center (a, b). Under the tangential criterion in
Section 1, the exact circular solution can be constructed
if R(t) is a solution of

dR

dt
= C −R−1, (3)

and

ξ(t) = b+
√
(R(t) + λ)2 − a2,

d(t) =
aR(t)

R(t) + λ
,

h(t) = f(±d(t), t),

where parameters and functions should satisfy

0 < a− λ < d(t) < a,

and b ∈ R. See Fig. 4.
The minimum point, say m(t), is achieved at x = 0,

that is,

m(t) = f(0, t) = ξ(t)−R(t).

By virtue of Proposition 1, the following proposition
holds.

Proposition 2 We have the following properties:

• if R(0) > C−1, then m(t) → b+ λ holds as t → ∞;

• if R(0) < C−1 and m(0) > b, then there exist three
breakpoints of time 0 < t1 < t2 < t3 < T such that

⋆ m(t) → b holds as t → t1 = F (R1),
⋆ m(t) → b− λ holds as t → t2 = F (R2),
⋆ m(t) → b+ λ− a holds as t → t3 = F (R3),

where

R1 =
a2 − λ2

2λ
, R2 =

a2

4λ
, R3 = a− λ,

and T = F (0).

For example, if we choose a = 1.5, b = 0.6, λ = 0.5,
C = 0.75, and R(0) = 1.4, we obtain the result cor-
responding to Fig. 5. Fig. 6 illustrates the result for
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t = 0

t ≫ 1

Fig. 5. Exact solution, R(0) > C−1.

t = 0

t = t1

t = t2

t = t3

Fig. 6. Exact solution, R(0) < C−1 and m(0) > b.

t = 0

t = t1

t = 0

Fig. 7. Symmetric solution, t1 is the touching time.

t = 0

t = t
∗

t = 0

Fig. 8. Non-symmetric solution, t∗ is the touching time.

the same geometry is chosen but this time C = 0.05
and R(0) = 10. According to Proposition 2, we obtain
R1 = 2, R2 = 1.125, and R3 = 1 computed from (2).
Symmetric or non-symmetric touching phenomena

can be constructed by means of two exact solutions start-
ing from opposite sides of obstacles. Fig. 7 illustrates the
symmetric solution with the touching at t1 = F (R1) ac-
cording to Proposition 2. The non-symmetric solution is
obtained by choosing different R(0) for upper and bot-
tom curve. See Fig. 8. We confirmed the exact solutions
by numerical computation of (3).

3. Numerical treatment

We consider a simple, embedded and open plane curve
Γ which is described by a smooth function x⃗ : [0, 1] ∋
u 7→ x⃗(u) ∈ R2 with |∂ux⃗(u)| > 0, where x⃗(0) ̸= x⃗(1)
are the two endpoints. We assume the total length of
the curve Γ is finite. Here and hereafter, we denote
∂ξF = ∂F/∂ξ and |⃗a| =

√
a⃗ · a⃗ where a⃗ · b⃗ is the Eu-

clidean inner product between vectors a⃗ and b⃗ in the
plane R2. The unit tangent vector can be defined as
t⃗ = ∂ux⃗/|∂ux⃗(u)| = ∂sx⃗, where s is the arc-length pa-
rameter and ds = |∂ux⃗(u)|du. The normal vector n⃗ is
defined in such a way that det(n⃗, t⃗) = 1. The curvature
k is defined by Frenet-Serret formula ∂st⃗ = −kn⃗.
For a given simple, embedded, open plane curve Γ0 :

x⃗0(u) (u ∈ [0, 1]) with a finite length, our problem is to
find a family of plane curves {Γ(t)}0≤t<T , T > 0, where
Γ(t) is described by a smooth function

x⃗ : [0, 1]× [0, T ) ∋ (u, t) 7→ x⃗(u, t) ∈ R2

~x

u u = 0

u = 1

~n

~t

Fig. 9. Curve quantities.
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Fig. 10. Algorithm for topological changes.

with |∂ux⃗(u, t)| > 0, starting from Γ(0) = Γ0 : x⃗(u, 0) =
x⃗0(u) (u ∈ [0, 1]). It evolves in the normal and the tan-
gential directions according to the following law:

∂tx⃗ = V n⃗+ αt⃗. (4)

Here n⃗ = n⃗(u, t) and t⃗ = t⃗(u, t) are the unit normal and
tangential vectors, V = C − k(u, t) and α = α(u, t) are
the normal and the tangential velocities, respectively,
and k(u, t) is the curvature. Note that the tangential
velocity α(u, t), u ∈ (0, 1) can be chosen arbitrary if α
is continuous up to the endpoints [8].
Let us consider two open curves Γ1 and Γ2 discretized

as X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} in R2.
The curves evolve independently according to the equa-
tion (4). The algorithm for connecting two open curves
is as follows:

1. At time tk, find first two intersections of polygonal
curves X and Y . If no intersection occurs, go to
step 9.

2. Denote the starting points of intersecting line seg-
ments from X as xi1, xi2 and from Y as yj1, yj2
according to Fig. 10b.

3. Create two new open curves U = {u1, u2, . . . , un̄}
and V = {v1, v2, . . . , vm̄}, where n̄ = n − i2 + i1
and m̄ = m− j2 + j1.

4. Copy points from X from x1 up to xi1 to U .

5. Copy points from Y from yj1 up to y1 to U .

6. Copy points from X from xn up to xi2+1 to V .

7. Copy points from Y from yj2+1 up to ym to V .

8. Delete X, Y and set X = U , Y = V . See Fig. 10c.

9. Proceed to a new time for X, Y , set k = k+1, and
go to step 1.

The main difference between this approach (checking
the intersection of two curves) and standard known ap-
proach [7] (tolerance based connecting) is in its reliabil-
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~n

(a) t = 0. (b) t = 0.7575.

(c) t = 1.02875. (d) t = 1.24125.

(e) t = 1.26. (f) t = 1.36625.

(g) t = 1.36875. (h) t = 1.45.

Fig. 11. Numerical solution of (4). Typical phenomena of topo-
logical changes and a bottleneck can be observed, namely the
touching-splitting, non-touching, and the Orowan island.

ity. There is not any tolerance and also any artificial con-
dition on the time step length. Curves can be discretized
by less points and still the algorithm works well.
Fig. 11 indicates the numerical solution of (4) with a

non-trivial tangential velocity α for numerical stability
[8, 9]. The fixed endpoints and some parts of the curve
are cropped from the figure to focus on the interaction
with precipitates. All important and typical phenom-
ena can be observed, namely the touching-splitting, non-
touching, and the Orowan island [10].

4. Concluding remarks

In the present paper, evolving curves connecting two
circular obstacles were treated by the evolution law
V = C−k. An exact solution curve was constructed and
a posteriori numerical technique was proposed. Under
our numerical technique, one can treat touching-splitting

phenomena of two curves without a priori artificial cri-
terion.
Future work remains as follows: (1) to treat general

solution curves (other than circular arcs) for disloca-
tion bowing from mathematical point of view, (2) to
optimize the algorithm for topological changes, and (3)
to establish the maximum principle for evolving open
curves with prescribed moving endpoints.
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