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Abstract

We show conditional stability of the Lagrange–Galerkin scheme with numerical quadrature
for the convection-diffusion equation. We consider the scheme under the assumption that
quadrature points are inside the element and that the time increments are sufficiently small.
Our analysis covers general triangular or tetrahedral meshes and arbitrary smooth velocities.
We present some numerical examples that reflect the theoretical result.
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1. Introduction

The Lagrange–Galerkin scheme, also called the
characteristics finite element scheme or Galerkin-
characteristics scheme, is a powerful numerical scheme
for flow problems such as the convection-diffusion equa-
tions and the Navier–Stokes equations.
Although stability and convergence analysis of the

scheme has been performed successfully, the results
are proved under the condition that the integration of
the composite function term, which characterizes the
method, is computed exactly. Since in real problems it
is difficult to get the exact integration value, numeri-
cal quadrature is usually used. However, it has been re-
ported that instability can occur as a result of the nu-
merical quadrature error [1–5].
Several methods have been investigated to avoid in-

stability. Morton–Priestley–Suli [1] proposed a method
called area weighting. Tabata–Fujima [2] and Tabata
[3] used a scheme of second order in time increments
and take large time increments to suppress instability.
Tanaka–Suzuki–Tabata [4] used a locally linearized ve-
locity and calculated the integral exactly for the P1-
element. Recently, the method has been extended to the
P2-element and provided with error estimates [5]. On
the other hand, the stability condition of the scheme
with quadrature is analyzed in [1], where it is assumed
that the velocity is constant and the mesh is uniform in
each coordinate direction.
In this paper, we show conditional stability of the

Lagrange–Galerkin scheme with numerical quadrature
for the convection-diffusion equation. We only analyze
the numerical quadrature whose quadrature points are
inside the element. Our analysis is performed on general
triangular or tetrahedral meshes and arbitrary smooth
velocities. We also provide numerical examples using nu-

merical quadrature with and without quadrature points
on the edges.

2. Preliminaries

In this section, we state the problem and prepare no-
tation used throughout this paper.
For a set ω we use the Sobolev spaces Lp(ω) with

the norm ∥·∥0,p,ω, W s,p(ω) and W s,p
0 (ω) with the norm

∥·∥s,p,ω for 1 ≤ p ≤ ∞ and a positive integer s. We write

Hs(ω) = W s,2(ω) and drop the subscript p = 2 in the
corresponding norms.
We consider the convection-diffusion problem: find ϕ :

Ω× (0, T ) → R such that

∂ϕ

∂t
+ u · ∇ϕ− ν∆ϕ = f in Ω× (0, T ), (1a)

ϕ = 0 on ∂Ω× (0, T ), (1b)

ϕ = ϕ0 in Ω at t = 0, (1c)

where Ω is a polygonal or polyhedral domain of Rd (d =
2, 3), ∂Ω is its boundary, T > 0 is a time and ν > 0
is a diffusion constant. Functions u : Ω × (0, T ) → Rd,
f ∈ C([0, T ];L2(Ω)) and ϕ0 : Ω → R are given.
Let ∆t > 0 be a time increment, NT ≡ ⌊T/∆t⌋, tn ≡

n∆t and ψn ≡ ψ(·, tn) for a function ψ defined in Ω ×
(0, T ). For a set of functions ψ = {ψn}NT

n=0, two norms
∥·∥ℓ∞(L2) and ∥·∥ℓ2(L2) are defined by

∥ψ∥ℓ∞(L2) ≡ max{∥ψn∥0,Ω ;n = 0, . . . , NT },

∥ψ∥ℓ2(L2) ≡

(
∆t

NT∑
n=1

∥ψn∥20,Ω

)1/2

.

For w : Ω → Rd we define the mapping X1(w) : Ω →
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Rd by

(X1(w))(x) ≡ x− w(x)∆t. (2)

Then, it holds that

∂ϕn

∂t
+ un · ∇ϕn − ϕn − ϕn−1 ◦X1(u

n)

∆t
= O(∆t),

where the symbol ◦ stands for the composition of func-
tions, e.g., (g ◦ f)(x) ≡ g(f(x)).
Let Th ≡ {K} be a triangulation of Ω̄, hK ≡ diam(K)

and h ≡ maxK∈Th
hK . Throughout this paper we con-

sider a regular family of triangulations {Th}h↓0 satisfying
the inverse assumption [6], that is, there exists a posi-
tive constant σ such that σh ≤ hK , ∀K ∈ Th and ∀h.
Let k be a fixed positive integer and Vh be the Pk-finite
element space,

Vh ≡ {vh ∈ H1
0 (Ω); vh|K ∈ Pk(K),∀K ∈ Th},

where Pk(K) is the set of polynomials on K whose de-
grees are less than or equal to k. The parentheses (·, ·)
indicate the L2(Ω)-inner product (f, g) ≡

∫
Ω
fgdx.

3. The Lagrange–Galerkin schemes

In this section we introduce the Lagrange–Galerkin
schemes. Let ϕ0h ∈ Vh be an approximation of ϕ0 and set
Xn

1 = X1(u
n). The Lagrange–Galerkin scheme, which

we call Scheme LG, is described as follows.
Scheme LG Find {ϕnh}

NT

n=1 ⊂ Vh such that for n =
1, . . . , NT(

ϕnh − ϕn−1
h ◦Xn

1

∆t
, ψh

)
+ ν(∇ϕnh,∇ψh) = (fn, ψh),

∀ψh ∈ Vh.

For a general velocity u it is difficult to calculate
the composite function term (ϕn−1

h ◦Xn
1 , ψh) exactly. In

practice, the following numerical quadrature has been
used. We set a pair of a weight and a quadrature point
on the reference element K̂ by (wi, âi) ∈ R × K̂ for
i = 1, . . . , Nq, where Nq is the number of the points. For
a general element K we define the quadrature point by
ai ≡ FK(âi), where FK is the invertible affine mapping
from K̂ onto K. For a continuous function v : K → R a
numerical quadrature Ih[v;K] of

∫
K
v dx is defined by

Ih[v;K] ≡ meas(K)

Nq∑
i=1

wiv(ai). (3)

We call the practical scheme using numerical quadrature
Scheme LG′.
Scheme LG′ Find {ϕnh}

NT

n=1 ⊂ Vh such that for n =
1, . . . , NT

1

∆t
(ϕnh, ψh)−

1

∆t

∑
K∈Th

Ih[(ϕ
n−1
h ◦Xn

1 )ψh;K]

+ ν(∇ϕnh,∇ψh) = (fn, ψh), ∀ψh ∈ Vh.

(4)

It has been reported that stability does not hold in gen-
eral [1–5].

*

*

*

*

*

*

*

Fig. 1. An element K, the image Xn
1 (K), quadrature points of

seven points formula ai (•) and Xn
1 (ai) for i = 1, . . . , 7 (∗).

4. Conditional stability

In this section, we consider the stability of Scheme
LG′ for sufficiently small time increments ∆t. We con-
sider the quadrature formula (3) whose quadrature
points {ai} are inside the element. For example, the
seven-point formula of degree five [7] satisfies the con-
dition. We restrict the time increment so small that the
point Xn

1 (ai) is also in the element (Fig. 1).

Hypothesis 1 u ∈ C([0, T ];W k,∞(Ω)d).

Hypothesis 2 Numerical quadrature Ih satisfies that

(1) each quadrature point satisfies ai ∈ int(K),
(2) each weight wi is positive,
(3) the quadrature formula is of degree r,

where r is a positive integer.

Theorem 3 Suppose that Hypotheses 1 and 2 hold with
r ≥ 2k. Let ϕh be the solution of (4). Then, there exist
positive constants c1 and c2 independent of h,∆t, ϕh, f
and T , and a positive constant ∆t0 = O(h) such that if
∆t ≤ ∆t0, it holds that

∥ϕh∥ℓ∞(L2),
√
2ν∥∇ϕh∥ℓ2(L2)

≤exp

((
c1+c2

∆t

h2

)
T

)1/2

(
∥∥ϕ0h∥∥0,Ω+∥f∥ℓ2(L2)). (5)

Remark 4 (i) If we take ∆t ≤ ch2, the scheme is sta-
ble. (ii) One may consider that this result is not con-
sistent with that of [1], wherein it was concluded that
the Lagrange–Galerkin methods with quadrature whose
quadrature points are inside the element are unstable.
However, their criterion for stability is |λ| ≤ 1, where λ
is the amplification factor in the Fourier analysis. The
von Neumann condition |λ| ≤ 1 + c∆t is sufficient for
stability on the time interval (0, T ).

We prepare lemmas before the proof of Theorem 3.

Lemma 5 Suppose that the family of triangulations
{Th}h↓0 is regular. Let p = 2 or ∞ and a non-negative
integer s be given. Then, there exists a positive constant
γ1 independent of K ∈ Th and h such that

∥ψh∥s,p,K ≤ γ1h
−s−d/2+d/p
K ∥ψh∥0,K , ψh ∈ Pk(K).

Lemma 5 is the inverse inequality on an element K [6].

Lemma 6 Assume that the quadrature formula is of
degree 2k − 1. Then, there exists a positive constant γ2
independent of K ∈ Th such that∣∣∣∣∫

K

v
∂ψ1h

∂xi
ψ2hdx− Ih

[
v
∂ψ1h

∂xi
ψ2h;K

]∣∣∣∣
≤ γ2h

k
K ∥v∥k,∞,K ∥ψ1h∥k,K ∥ψ2h∥0,K ,

∀v ∈W k,∞(K), ∀ψ1h, ψ2h ∈ Pk(K), i = 1, . . . , d.
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The proof of Lemma 6 is same as that of [6, Theo-
rem 4.1.4].

Lemma 7 Let v ∈W k,∞(Ω)d. Suppose that Hypothesis
2 holds with r ≥ 2k, ∆t ≤ h and (X1(v))(ai) ∈ K, i =
1, . . . , Nq. Then, there exist positive constants c3(v) and
c4(v) such that∑

K∈Th

Ih[(ψh ◦X1(v))
2;K]

≤
(
1 + c3∆t+ c4

∆t2

h2

)
∥ψh∥20,Ω , ∀ψh ∈ Vh. (6)

Proof In this proof, we write X1(v) as X1. Since
quadrature point ai and X1(ai) = ai−v(ai)∆t are in the
same element K, we apply the Taylor series expansion
to obtain

(ψh(ai − v(ai)∆t))
2

=

(∑
|α|≤k

1

α!
(−∆t)|α|v(ai)

αDαψh(ai)

)2

=
∑

|α1|≤k,|α2|≤k

{
1

α1!α2!
(−∆t)|α1|+|α2|

× v(ai)
α1+α2Dα1ψh(ai)D

α2ψh(ai)

}
,

where α, α1 and α2 are multi indexes. We divide Ih[(ψh◦
X1)

2;K] as

Ih[(ψh ◦X1)
2;K]

= Ih[ψ
2
h;K]− 2∆tIh[(v · ∇ψh)ψh;K]

+
∑

2≤|α1|+|α2|≤2k

{
1

α1!α2!
(−∆t)|α1|+|α2|

× Ih[v
α1+α2Dα1ψhD

α2ψh;K]

}
≡ JK

0 + JK
1 + JK

2 . (7)

Since the quadrature formula is of degree r (≥ 2k),

JK
0 = ∥ψh∥20,K . (8)

Using Lemmas 6 and 5, we have

JK
1 ≤− 2∆t

∫
K

(v · ∇ψh)ψhdx

+ 2∆t

∣∣∣∣∫
K

(v · ∇ψh)ψhdx− Ih[(v · ∇ψh)ψh;K]

∣∣∣∣
≤− 2∆t

∫
K

(v · ∇ψh)ψhdx

+ c(γ2)∆th
k
K ∥v∥k,∞,K ∥ψh∥k,K ∥ψh∥0,K

≤− 2∆t

∫
K

(v · ∇ψh)ψhdx

+ c(γ1, γ2, v)∆t ∥ψh∥20,K . (9)

Since it holds that |Dαlψh(ai)| ≤ γ1h
−|αl|−d/2
K ∥ψh∥20,K

from Lemma 5, we have

JK
2 = meas(K)

∑
2≤|α1|+|α2|≤2k

(
1

α1!α2!
(−∆t)|α1|+|α2|

×
Nq∑
i=1

wiv(ai)
α1+α2Dα1ψh(ai)D

α2ψh(ai)

)

≤ c(γ1) ∥ψh∥20,K
2k∑
j=2

∆tj ∥v∥j0,∞,K h−j
K , (10)

where we have used the assumption wi > 0, the identity∑Nq

i=1 wi = 1 and the inequality meas(K) ≤ hdK . Sum-
ming over all K ∈ Th in (7), combining with (8)–(10)
and using ∆t ≤ h, we have∑
K∈Th

Ih[(ψh ◦X1)
2;K]

≤ ∥ψh∥20,Ω − 2∆t

∫
Ω

(v · ∇ψh)ψhdx

+ c(γ1, γ2, v)∆t ∥ψh∥20,Ω + c4(γ1, v)
∆t2

h2
∥ψh∥20,Ω .

Noting that ψh = 0 on ∂Ω and∫
Ω

(v · ∇ψh)ψhdx = −1

2

∫
Ω

(∇ · v)ψ2
hdx,

we obtain (6).
(QED)

Lemma 8 (discrete Gronwall inequality) Let a0
and a1 be non-negative numbers, ∆t ∈ (0, 1/(2a0)] a
real number, and {xn}n≥0 , {yn}n≥1 and {bn}n≥1 non-
negative sequences. Suppose that

1
∆t (x

n − xn−1) + yn ≤ a0x
n + a1x

n−1 + bn, ∀n ≥ 1.

Then, it holds that, for n ≥ 1,

xn+∆t
n∑

i=1

yi ≤ exp {(2a0 + a1)n∆t}

(
x0 +∆t

n∑
i=1

bi

)
.

Lemma 8 is shown by using the inequalities

(1− a0∆t)
−1 ≤ 1 + 2a0∆t ≤ exp(2a0∆t).

Proof of Theorem 3 Substituting ψh = ϕnh in (4)
and noting that the quadrature formula is of degree r
(≥ 2k), we have

1

2∆t
∥ϕnh∥

2
0,Ω − 1

2∆t

∑
K∈Th

Ih[(ϕ
n−1
h ◦Xn

1 )
2;K]

+
1

2∆t

∑
K∈Th

Ih[(ϕ
n
h − ϕn−1

h ◦Xn
1 )

2;K] + ν ∥∇ϕnh∥
2
0,Ω

= (fn, ϕnh).

Let ∆t0 be so small that Xn
1 (ai) ∈ K for ∆t ≤ ∆t0

and i = 1, . . . , Nq, and ∆t0 ≤ min{1/2, h}. Applying
Lemma 7 with ψh = ϕn−1

h and v = un, we have

1

2∆t
(∥ϕnh∥

2
0,Ω −

∥∥ϕn−1
h

∥∥2
0,Ω

) + ν ∥∇ϕnh∥
2
0,Ω

≤ 1

2

(
c3 + c4

∆t

h2

)∥∥ϕn−1
h

∥∥2
0,Ω

+
1

2
∥fn∥20,Ω +

1

2
∥ϕnh∥

2
0,Ω ,
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where we have used the fact that

Ih[(ϕ
n
h − ϕn−1

h ◦Xn
1 )

2;K] ≥ 0

for each K since all weights are positive. We obtain (5)
by Lemma 8.

(QED)

5. Numerical results

In this section, we show numerical results in d = 2.
We compare Scheme LG′ with two quadrature formulas
and Scheme LG. The P2-element is employed. We use
the rotating Gaussian hill problem [3] as a test problem.
Example In (1), Ω is a unit disk, and we set T =
2π, ν = 10−5, u(x, t) ≡ (−x2, x1), f ≡ 0 and ϕ0 ≡
ϕe(·, 0), where

ϕe(x, t) ≡
σ

σ + 4νt
exp

(
−|x− x̄(t;xc)|2

σ + 4νt

)
,

x̄(t;xc) ≡ (xc1 cos t− xc2 sin t, xc1 sin t+ xc2 cos t),

xc ≡ (0.25, 0) and σ ≡ 0.01.

This problem does not satisfy our setting since Ω is not
a polygon. The function ϕe satisfies (1a) and (1c) but
does not satisfy the boundary condition (1b). However,
we treat ϕe as the exact solution since the value of ϕe
on ∂Ω is less than 10−15 and thus almost equal to zero.
We use two meshes obtained by FreeFem++ [8] by set-

tingN vertices on the circle forN = 64 and 128. We take
∆t as 0.01×2i (i = −1, . . . , 4), 0.001×2i (i = −1, . . . , 2)
and 0.007. In this problem, we can obtain the numerical
solution by Scheme LG using exact integration since
the velocity u is linear [4,5]. We use the seven-point (S)
and Newton–Cotes (NC) formulas for Scheme LG′ (see
Figs 1 and 2). Both formulas are of degree five and have
positive weights. For formula S we check Xn(ai) ∈ K for
∆t ≤ 0.002 in the case of N = 64 and ∆t ≤ 0.001 in the
case of N = 128. Note that we do not have theoretical
results for formula NC since it has quadrature points on
the edge. The relative error E is defined by

E ≡ ∥Π(2)
h ϕe − ϕh∥ℓ∞(L2)/∥Π

(2)
h ϕe∥ℓ∞(L2),

where Π
(2)
h is the Lagrange interpolation operator to the

P2-finite element space.
Fig. 3 shows the log-log graphs of E versus ∆t. In the

case of N = 64, the error of Scheme LG′ with formula
S is large for ∆t between 0.01 and 0.005 while it is as
small as that of Scheme LG for ∆t ≤ 0.004. The result
is consistent with Theorem 3. Although the change of
error with formula NC is small for ∆t ≤ 0.02, the error
is larger than that of Scheme LG. In the case ofN = 128,
the error of Scheme LG′ with formula S is large for ∆t
between 0.01 and 0.002 while it is as small as that of
Scheme LG for ∆t ≤ 0.001. The error with formula NC
is ten times larger than that of Scheme LG for ∆t =
0.0005.

6. Conclusions

We proved conditional stability of the Lagrange–
Galerkin scheme with numerical quadrature having in-
terior quadrature points for sufficiently small time in-

Fig. 2. Quadrature points of NC.

LG S NC

0.0005 0.002 0.01 0.04 0.16
10-2

10-1

100

Dt

E

0.0005 0.002 0.01 0.04 0.16
10-2

10-1

100

Dt

E

Fig. 3. Graphs of E versus ∆t for N = 64 (left) and N = 128
(right).

crements. Numerical examples were consistent with the
theoretical result. We did not analyze quadrature with
quadrature points on the boundary but numerical re-
sults showed that Newton–Cotes quadrature was robust
with respect to time increments.
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