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Abstract

De Klerk-Pasechnik (2002) showed a way to compute the stability number α(G) via copositive
programming and proposed LP- and SDP-based approximation schemes for the copositive
program. In this paper, we show that their LP-based approximation for the stable set problem
is equivalent to a problem of minimizing a quadratic form over a rational grid on the simplex,
which can be viewed as a discretized version of the Motzkin-Straus theorem. Furthermore, we
provide an algorithm to recover a maximum stable set from an optimal solution of the LP-
based approximation and propose a simple local search heuristics for the stable set problem.
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1. Introduction

The stable set problem is a classical problem in combi-
natorial optimization, which has important applications
in various fields. A pioneering work by Lovász [1] intro-
duced an SDP relaxation for the stable set problem to
obtain an upper bound θ(G) (called theta number) of
the stability number α(G). De Klerk-Pasechnik [2] re-
fined this approach and provided a way to obtain α(G)
via copositive programming. They also provided LP-
and SDP-based approximation schemes by replacing the
copositive cone Cn with a sequence of cones that con-
verges to Cn and proved that both of the schemes yield
α(G) after rounding down if the degree r of approxima-
tion is sufficiently large.
In this paper, we establish a new explicit formula for

the optimal value of their LP-based approximation and
reformulate it as a minimization of a quadratic form over
a rational grid on the simplex. Our reformulation sheds
a new insight on the LP-based approximation and clar-
ifies its power of approximation. Our discrete quadratic
program may be viewed as a discretized version of a clas-
sical result by Motzkin-Straus [3] on representing the
stability number as a quadratic program. We provide an
algorithm to recover a stable set from the support of a
feasible solution. Our algorithm actually gives a maxi-
mum stable set from any optimal solution, provided the
degree r of approximation is at least α(G)−2. This lower
bound sharpens the result of Peña-Vera-Zuluaga [4]. Fur-
thermore, on the basis of these results, we provide a quite
simple local search heuristics for the stable set problem.
The efficiency of the proposed heuristics is confirmed by
computational experiments on DIMACS benchmarks.

2. Preliminaries

2.1 Stable set problem

Throughout the paper G = (V,E) will denote a simple
undirected graph with vertex set V = {1, . . . , n} and
edge set E. Also, let A be the adjacency matrix of G, I
the n × n identity matrix, and e the n-dimensional all-
one vector. A subset V ′ ⊆ V is stable if {i, j} /∈ E for all
i, j ∈ V ′. A stable set is maximum if there are no larger
stable sets in G and the stability number α(G) is the
cardinality of a maximum stable set in G. The stable set
problem is to find a maximum stable set and is known
to be NP-hard [5].

2.2 Copositive programming

Let Sn be the set of all n × n real symmetric matri-
ces. A matrix X ∈ Sn is said to be copositive if y⊤Xy
is nonnegative for all n-dimensional nonnegative vectors
y ∈ Rn

+. The set of all n × n copositive matrices is de-
noted by Cn. A Copositive program is a convex optimiza-
tion problem of the following form:

Minimize Tr(CX)

subject to Tr(AiX) = bi (i = 1, . . . ,m), X ∈ Cn,

where Ai, X,C ∈ Rn×n and bi ∈ R. The stability num-
ber α(G) can be obtained by solving a copositive pro-
gram.

Theorem 1 (De Klerk-Pasechnik [2]) The stabil-
ity number α(G) equals the optimal value of

Minimize λ

subject to λ(I +A)− ee⊤ ∈ Cn, λ ∈ R. (1)

Theorem 1 implies that copositive programming is in-
tractable. In fact, determining whether a matrix is
copositive is co-NP-complete [6].
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2.3 LP-based approximation

De Klerk-Pasechnik [2] introduced an LP-based ap-
proximation hierarchy for Cn. We consider the equivalent
definition of copositivity to construct the approximate
cone. We can see that M ∈ Sn is copositive if and only
if the fourth order form given by

PM (x) = (x ◦ x)⊤M(x ◦ x) =
n∑

i,j=1

Mijx
2
ix

2
j

is nonnegative, where “◦” indicates the componentwise
product. Obviously, a sufficient condition for M to be
copositive is that all the coefficients of PM (x) are non-
negative. Then higher-order sufficient conditions can be
derived by considering whether the coefficients of the
polynomial

P
(r)
M (x) =

 n∑
i,j=1

Mijx
2
ix

2
j

( n∑
i=1

x2
i

)r

take nonnegative values. For any integer r ≥ 0, we define
Cr
n as the cone of matrices M ∈ Sn such that all the co-

efficients of P
(r)
M (x) are nonnegative. Then the following

inclusions hold:

C0
n ⊆ C1

n ⊆ · · · ⊆ Cn. (2)

We define ζ(r)(G) as the minimum of the LP-based ap-
proximation of (1):

Minimize λ

subject to λ(I +A)− ee⊤ ∈ Cr
n, λ ∈ R, (3)

where we set ζ(r)(G) = ∞ if the problem is infeasible.
Then it follows from (2) that

ζ(0)(G) ≥ ζ(1)(G) ≥ · · · ≥ α(G).

De Klerk-Pasechnik [2] showed that ⌊ζ(r)(G)⌋ = α(G)
if r ≥ α(G)2. Peña-Vera-Zuluaga [4] strengthened and
sharpened their result as follows.

Theorem 2 (Peña-Vera-Zuluaga [4]) It holds that
⌊ζ(r)(G)⌋ = α(G) if and only if r ≥ α(G)2 − 1. Further-
more, ζ(r)(G) < ∞ if and only if r ≥ α(G)− 1.

Thus we can regard problem (3) as an LP-based formu-
lation of the stable set problem for sufficiently large r.

3. Results

3.1 Discrete version of Motzkin-Straus theorem

We present a new explicit expression of ζ(r)(G) as fol-
lows.

Theorem 3 For r ≥ α(G)− 1, we have

ζ(r)(G) = max
w∈In(r+2)

(r + 2)(r + 1)

w⊤(I +A)w − (r + 2)
, (4)

where

In(t) = {w ∈ Zn
+ | e⊤w = t}.

Considering (3) as an LP with a single variable λ,
we can solve it easily by deriving conditions for each

coefficient of P
(r)
M (x) to be nonnegative. We can calculate

them by expanding the polynomial.

Lemma 4 (Bomze-de Klerk [7]) Let M ∈ Sn and
introduce the multinomial coefficients

c(m) =
(
∑n

i=1 mi)!

m1! . . .mn!

for any m ∈ Zn
+. Then we have

P
(r)
M (x) =

∑
w∈In(r+2)

awx
w1
1 . . . xwn

n ,

where

aw =
c(w)

(r + 2)(r + 1)
(w⊤Mw − w⊤diagM),

diagM = (M11, . . . ,Mnn)
⊤.

Now we can obtain (4) immediately from Lemma 4.

Proof of Theorem 3 The constraint in Problem (3),
λ(I + A) − ee⊤ ∈ Cr

n, means that every coefficient of
P r
λ(I+A)−ee⊤(x) is nonnegative. By Lemma 4, this is

equivalent to

w⊤(λ(I +A)− ee⊤)w − w⊤diag(λ(I +A)− ee⊤)

= λw⊤(I +A)w − (e⊤w)2 − (λ− 1)w⊤e

= λw⊤(I +A)w − (r + 2)2 − (λ− 1)(r + 2)

= λ[w⊤(I +A)w − (r + 2)]− (r + 2)(r + 1) ≥ 0

for every w ∈ In(r+2). If r ≥ α(G)−1, we have w⊤(I+
A)w−(r+2) > 0 for every w ∈ In(r+2) from Theorem 2.
Therefore (4) holds.

(QED)

Our formula can be viewed as a discretized version of
the Motzkin-Straus formula.

Theorem 5 (Motzkin-Straus [3]) We have

α(G) = max
x∈∆

1

x⊤(I +A)x
, (5)

where ∆ denotes the n-dimensional standard simplex.
Moreover, let {1, . . . , k} be a maximum stable set of G.
Then x1 = · · · = xk = 1/k, xk+1 = · · · = xn = 0 is an
optimal solution of (5).

The relation between (4) and (5) becomes more explicit
if we rewrite ζ(r

′−2)(G) for r′ ≥ α(G) + 1 as

ζ(r
′−2)(G) = max

x∈∆(r′)

r′ − 1

r′x⊤(I +A)x− 1
,

where ∆(r′) denotes the set of 1/r′-integral vectors in
∆ for r′ ∈ N. Theorem 5 also states that the support
of an optimal solution of (5) is a maximum stable set.
Correspondingly, we can derive a maximum stable set
from the support of an optimal solution of (4).

3.2 Recovery of stable set
We provide an algorithm to obtain a maximum stable

set from the support of an arbitrary optimal solution
of (4).

Definition 6 Let ei be the unit vector of the ith co-
ordinate direction. We denote by x̂ the vector obtained
from w ∈ In(r + 2) by applying the following procedure:

(i) If there are {i, j} ∈ E such that wi > 0, wj > 0,
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choose w+wi(ej −ei) or w+wj(ei−ej) as w
′ that

makes w′⊤(I+A)w′ smaller and replace w with w′.

(ii) Repeat (i) until the support of w corresponds to a
stable set of G.

We show that this procedure recovers a maximum stable
set if w is optimal. Note that it holds for r ≥ α(G) − 1
that

arg min
w∈In(r+2)

w⊤(I +A)w

= arg max
w∈In(r+2)

(r + 2)(r + 1)

w⊤(I +A)w − (r + 2)
.

Lemma 7 It holds for any w ∈ In(r + 2) that

w⊤(I +A)w ≥ ŵ⊤(I +A)ŵ.

Proof At each choice of w′ in Definition 6, if w′ =
w + wj(ei − ej), we have

w′⊤(I +A)w′ − w⊤(I +A)w

= w2
j (Iii −Aij −Aji + Ijj)+2wjw

⊤(I +A)(ei − ej)

= 2wjw
⊤(I +A)(ei − ej),

since {i, j} ∈ E. Similarly, if w′ = w + wi(ej − ei), we
have

w′⊤(I +A)w′ − w⊤(I +A)w = 2wiw
⊤(I +A)(ej − ei).

Since one of these values are nonpositive, w⊤(I+A)w ≥
w′⊤(I+A)w′. Thus we have w⊤(I+A)w ≥ ŵ⊤(I+A)ŵ
by repeating the process.

(QED)

Theorem 8 Let w∗ ∈ argminw∈In(r+2) w
⊤(I + A)w

and S(w) = {i | wi ̸= 0}. Then S(ŵ∗) is a maximum
stable set if and only if r ≥ α(G)− 2.

Proof If r < α(G)−2, it follows from the definition of
In(r+2) that |S(ŵ∗)| < α(G), which implies that S(ŵ∗)
is not a maximum stable set.
To show the sufficiency, suppose |S(ŵ∗)| < α(G).

Then there exists k /∈ S(ŵ∗) such that S(ŵ∗) ∪ {k} is a
stable set and l ∈ S(ŵ∗) such that ŵ∗

l ≥ 2. We consider
the vector w̃∗ − el + ek ∈ In(r + 2). It follows from the
stability of S(ŵ∗) and S(ŵ∗ − el + ek) that

ŵ∗⊤(I +A)ŵ∗ − (ŵ∗ − el + ek)
⊤(I +A)(ŵ∗ − el + ek)

= ŵ∗⊤ŵ∗ − (ŵ∗ − el + ek)
⊤(ŵ∗ − el + ek)

= 2(ŵ∗
l − 1) > 0.

Now, from the optimality of w∗ and Lemma 7,

w∗(I +A)w∗ = ŵ∗⊤(I +A)ŵ∗

> (ŵ∗ − el + ek)
⊤(I +A)(ŵ∗ − el + ek).

This contradicts w∗ ∈ argminw∈In(r+2) w
⊤(I+A)w. By

contradiction, |S(ŵ∗)| = α(G).
(QED)

Thus we can solve the stable set problem by minimiz-
ing the quadratic form over In(r + 2) for r ≥ α(G)− 2,
although ⌊ζ(r)(G)⌋ ̸= α(G) if α(G) ≤ r < α(G)2 − 1.
Since we need r′ ≥ α(G)2 − 1 to obtain α(G) in (4),

Algorithm 1 Local search for the stable set problem
w := e
while w is not a local optimum do
choose w′ ∈ N(w)
if w′⊤(I +A)w′ ≤ w⊤(I +A)w then

w := w′

end if
end while
compute ŵ
return S(ŵ)

Theorem 8 sharpens Theorem 2 with regard to the de-
gree of approximation.

3.3 Local search heuristics

We propose a simple heuristics for the stable set prob-
lem using the results in the previous subsections. For
each w ∈ In(r + 2), we regard

N(w) = {w + ei − ej | i, j ∈ {1, . . . , r}, wj > 0}

as a neighborhood of w. This neighborhood leads to a
local search shown in Algorithm 1. The heuristic starts
from the initial point w = e, which implies that we set
r = n−2. Then we repeatedly pick w′ ∈ N(w) to get the
objective value smaller until w reaches a local optimum.
In the algorithm, we take w as a local optimum if the
objective value does not change after n updates of w.
Finally, we compute ŵ and its support S(ŵ).
The performance of this heuristics has been tested on

the complement graphs of the DIMACS clique bench-
marks. See for details of the graphs at

http://dimacs.rutgers.edu/Challenges/.

We applied the heuristics 10 times for each graph. All
computations were executed with 2.4GHz Intel CPU
Core i7 and 16GB of memory. The results are given
in Table 1. The columns “Name”, “α(Ḡ)”, “Solution”,
“Average”, and “Time” represent the name of the graph,
the stability number of the complement graph, the max-
imum cardinality of the stable sets obtained, the average
cardinality of them, and CPU time in seconds.
The proposed heuristics found a maximum stable set

in 24 of the 36 instances in the categories of CFAT, John-
son, Hamming, PHAT, and MANN. However, it did not
perform well on the graphs in the categories of Keller,
SAN, SANR, and BROCK.

4. Conclusion

In this paper, we have reformulated the LP-based ap-
proximation for the stable set problem as a discrete ver-
sion of the Motzkin-Straus theorem. This reformulation
leads to a procedure to obtain a maximum stable set
from an optimal solution and a local search heuristics
for the stable set problem. Furthermore, we showed the
strict lower bound for our procedure to yield a maximum
stable set. This lower bound is less than the strict bound
to compute α(G) as the optimal value of the LP-based
approximation.
It remains as a future work to investigate whether we

can apply a similar idea to other problems in combinato-
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Table 1. Results on the DIMACS benchmarks.

Name α(Ḡ) Solution Average Time (s)

c-fat200-1 12 12 12.0 0.5
c-fat200-2 24 24 23.0 0.2
c-fat200-5 58 58 55.2 0.1
c-fat500-1 14 14 13.4 4.6

c-fat500-2 26 26 26.0 2.0
c-fat500-5 64 64 64.0 0.8
c-fat500-10 ≥126 126 125.8 0.5

johnson8-2-4 4 4 2.6 <0.1
johnson8-4-4 14 14 12.0 0.1
johnson16-2-4 8 8 7.7 0.2
johnson32-2-4 16 16 15.7 3.6

keller4 11 9 8.0 0.3
keller5 27 19 17.3 5.5
keller6 ≥59 38 35.8 125.4

hamming6-2 32 32 28.1 <0.1

hamming6-4 4 4 2.4 <0.1
hamming8-2 128 128 119.0 0.1
hamming8-4 16 16 14.0 0.8
hamming10-2 512 512 442.0 1.6

hamming10-4 ≥40 34 31.2 9.9
san200 0.7 1 30 15 15.0 <0.1
san200 0.7 2 18 12 12.0 <0.1
san200 0.9 1 70 45 45.0 <0.1

san200 0.9 2 60 38 36.1 0.1
san200 0.9 3 44 33 31.4 0.1
san400 0.5 1 13 7 7.0 <0.1

san400 0.7 1 40 20 20.0 0.1
san400 0.7 2 30 15 15.0 0.1
san400 0.7 3 22 12 12.0 0.1
san400 0.9 1 100 52 50.6 0.2

san1000 15 8 8.0 0.5
sanr200 0.7 18 17 15.2 0.3
sanr200 0.9 42 41 37.4 0.1
sanr400 0.5 13 11 9.9 4.2

sanr400 0.7 21 21 16.3 1.6
brock200 1 21 19 17.0 0.3
brock200 2 12 9 7.7 0.6
brock200 3 15 13 11.2 0.5

brock200 4 17 15 13.1 0.3
brock400 1 27 22 20.4 1.4
brock400 2 29 22 20.2 1.3
brock400 3 31 22 19.6 1.5

brock400 4 33 24 20.3 1.3
brock800 1 23 18 16.1 15.3
brock800 2 24 18 16.2 14.9

brock800 3 25 18 16.4 15.6
brock800 4 26 19 16.7 19.3
p hat300-1 8 7 6.0 3.2
p hat300-2 25 25 23.5 0.6

p hat300-3 36 36 31.8 0.4
p hat500-1 9 8 6.8 10.0
p hat500-2 36 36 34.4 1.2
p hat500-3 ≥49 49 47.2 0.9

p hat700-1 11 9 6.7 25.2
p hat700-2 44 44 41.8 2.8
p hat700-3 62 60 58.4 1.8
p hat1000-1 10 10 7.1 56.7

p hat1000-2 46 45 42.9 6.8
p hat1000-3 65 64 61.6 4.1
p hat1500-1 12 11 7.7 186.1

p hat1500-2 63 63 60.7 13.4
p hat1500-3 94 90 87.5 8.8

MANN a9 16 16 14.7 <0.1
MANN a27 126 118 117.2 0.1

MANN a45 345 332 330.4 0.5
MANN a81 ≥1100 1081 1080.2 5.8

rial optimization which can be formulated as a copositive
program. Also, the performance of our heuristics can be
expected to improve by using a more efficient technique,
such as tabu search, for the local search.
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