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Abstract

In this paper, we propose a numerical method for verifying the positiveness of solutions to
semilinear elliptic boundary value problems. We provide a sufficient condition for a solution to
an elliptic problem to be positive in the domain of the problem, which can be checked numer-
ically without requiring a complicated computation. Although we focus on the homogeneous
Dirichlet case in this paper (in fact, it is often possible that solutions are not positive near the
boundary in this case), our method can be applied naturally to other boundary conditions.
We present some numerical examples.
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1. Introduction

We are concerned with the following elliptic problem: −Lu = f (u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1)

where Ω is a bounded domain (i.e., an open connected
bounded set) in Rn (n = 1, 2, 3, . . . ), f is a given nonlin-
ear operator from H1

0 (Ω) to L2 (Ω), and L is a uniformly
elliptic self-adjoint operator from its domain D(L) to
L2 (Ω) (the domain D(L) depends on the smoothness
of the boundary ∂Ω). Here, letting H1 (Ω) denote the
first order L2-Sobolev space on Ω, H1

0 (Ω) is defined as
H1

0 (Ω) := {u ∈ H1 (Ω) : u = 0 on ∂Ω in the trace
sense}, with inner product (·, ·)H1

0 (Ω) := (∇·,∇·)L2(Ω)

and norm ∥·∥H1
0 (Ω) := ∥∇·∥L2(Ω). To be precise, L can

be written in the form

L =

n∑
i,j=1

ai,j
∂2

∂xi∂xj
+ c, (2)

where the following properties hold:

• ai,j ∈ L∞ (Ω) (i, j = 1, 2, . . . , n) and c ∈ L∞ (Ω);

• ai,j = aj,i (i, j = 1, 2, . . . , n);

• There exists a positive number µ0 such that

n∑
i,j=1

ai,j (x) ξiξj ≥ µ0

n∑
i=1

ξ2i (3)

for all x ∈ Ω and all n-tuples of real numbers
(ξ1, ξ2, . . . , ξn).

Here, L∞ (Ω) is the functional space of Lebesgue mea-
surable functions over Ω with the norm ∥u∥L∞(Ω) :=

ess sup{|u (x)| |x ∈ Ω} for u ∈ L∞ (Ω).
Eq. (1) arises from various models, including examples

from biology and physics. In addition, it has many math-
ematical applications, such as in the analysis of solution
structures of partial differential equations and optimiza-
tion problems. In other words, it is often necessary to
distinguish positive solutions from others.
There have been a number of numerical methods for

verifying solution to elliptic problems (see, e.g., [1–4])
and related works, e.g., [5,6]. Such methods enable us to
obtain a concrete ball containing exact solutions to the
problem {

−Lu = f (u) in Ω,
u = 0 on ∂Ω,

(4)

typically in the sense of one of the norms ∥·∥H1
0 (Ω) or

∥·∥L∞(Ω). No matter how small the radius of the ball is,
it is possible for a verified solution u not to be positive
near the boundary ∂Ω, because the solution u vanishes
exactly on ∂Ω.
In this paper, we will propose a numerical method for

verifying the positiveness of solutions to (4), in order to
verify solutions of (1). Theorem 2 provides a sufficient
condition for positiveness. Moreover, this enables us to
numerically verify positiveness in the whole of Ω, even
near the boundary, and this only requires a simple nu-
merical computation.

2. Verification for positiveness

Throughout this paper, we omit the expression “al-
most everywhere” for Lebesgue measurable functions,
for simplicity. For example, we employ the notation
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u > 0 in the place of u(x) > 0 a.e. x ∈ Ω. We in-
troduce the following lemma that is required to prove
Theorem 2.

Lemma 1 Suppose that there exists a weak solution
u ∈ H1

0 (Ω) to (1), such that f (u) ≥ 0 (f (u) ̸≡ 0) and
(gu =)f (u)u−1 ∈ L∞ (Ω). Then,

ess sup{gu (x) |x ∈ Ω} ≥ λ1, (5)

where λ1 is the first eigenvalue of the problem

(−Lϕ, v)L2(Ω) = λ (ϕ, v)L2(Ω) , ∀v ∈ H1
0 (Ω) , (6)

in the weak sense.

Proof Let ϕ1 ≥ 0 (ϕ1 ̸≡ 0) be the first eigenfunc-
tion corresponding to λ1 (see, e.g., [7, Theorems 1.2.5
and 1.3.2] for ensuring the nonnegativeness of the first
eigenfunction). Since the weak solution u satisfies

(−Lu, v)L2(Ω) = (f (u) , v)L2(Ω) , ∀v ∈ H1
0 (Ω)

and L is self-adjoint, it follows that

(f (u) , ϕ1)L2(Ω) = λ1 (u, ϕ1)L2(Ω) .

Therefore,

(f (u) , ϕ1)L2(Ω)

=

∫
Ω

f (u (x))u (x)
−1 {u (x)ϕ1 (x)} dx

≤ ess sup{gu (x) |x ∈ Ω} (u, ϕ1)L2(Ω)

= λ−1
1 ess sup{gu (x) |x ∈ Ω} (f (u) , ϕ1)L2(Ω) .

The positiveness of

∫
Ω

f (u (x))ϕ (x) dx implies (5).

(QED)

Using Lemma 1, we are able to prove the following
theorem, which provides a sufficient condition for the
positiveness of solutions to (4).

Theorem 2 Suppose that a solution u ∈ C2 (Ω) ∩
C
(
Ω
)
to (4) satisfies the following properties:

i) u is positive in a nonempty subdomain Ω′ ⊂ Ω;

ii) |gu| < ∞ and f (|u|) ≥ 0;

iii) sup{gu− (x) |x ∈ Ω} < λ1 (Ω) .

Then, u > 0 in the original domain Ω; that is, u is also
a solution to (1). Here, gu := f (u)u−1, λ1 (Ω) is the
first eigenvalue of the problem (6), and u− is defined by

u− (x) :=

{
−u (x) , u (x) < 0,
0, u (x) ≥ 0.

Proof Assume that u is not always positive in Ω. The
strong maximum principle ensures that u is also not al-
ways nonnegative in Ω (the case that u ≡ 0 in Ω is
generally allowed, but this case is also ruled out ow-
ing to assumption i) in the statement). In other words,
there exists a nonempty subdomain Ω′′ ⊂ Ω\Ω′ such
that u < 0 in Ω′′ and u = 0 on ∂Ω′′. Therefore, the
restricted function v := −u|Ω′′ can be regarded as a so-
lution to  −Lv = f (v) in Ω′′,

v > 0 in Ω′′,
v = 0 on ∂Ω′′.

From Lemma 1, we have that

sup
x∈Ω

gu− (x) ≥ sup
x∈Ω′′

gv (x)

≥ λ1 (Ω
′′) ,

where λ1 (Ω
′′) is the first eigenvalue of (6), with the nota-

tional replacement Ω = Ω′′. Since the inclusion Ω′′ ⊂ Ω
ensures that all functions in H1

0 (Ω
′′) can be regarded

as functions in H1
0 (Ω) by considering the zero extension

outside Ω′′, the inequality λ1 (Ω
′′) ≥ λ1 (Ω) follows. This

contradicts the property iii).
(QED)

Remark 3 Since the strong maximum principle re-
quires the regularity u ∈ C2 (Ω) ∩C

(
Ω
)
, we require this

regularity to obtain the result in Theorem 2. For each
h ∈ L2 (Ω), the problem{

−∆u = h in Ω,
u = 0 on ∂Ω

has a unique solution u ∈ H2(Ω), such as when Ω is
a bounded convex domain with a piecewise C2 boundary
(see, e.g., [8, Section 3.3]). Therefore, the so called boot-
strap argument ensures that a weak solution u ∈ H1

0 (Ω)
to (4) on such a domain Ω, is in C∞ (Ω) (⊂ C2 (Ω)),
such as when L is the Laplace operator and f is given by
f (u) = |u|p−1

u (many other choices exist). Moreover,
the strong maximum principle can be applied to other
boundary conditions as well. To be precise, this princi-
ple claims that if −Lu > 0 in Ω, then u cannot have a
minimum in Ω independently of its boundary condition.
Therefore, this theorem can be naturally applied to other
boundary value problems. Details for the strong maxi-
mum principle can be found in, e.g., [9, 10].

The following corollary immediately follows from Theo-
rem 2 and will be convenient for presenting our numeri-
cal examples in the next section.

Corollary 4 Let f (u) = |u|p−1
u with p > 1. If a solu-

tion u ∈ C2 (Ω) ∩C(Ω) to (4) is positive in a nonempty
subdomain Ω′ ⊂ Ω and sup{(u− (x))p−1|x ∈ Ω} <
λ1 (Ω), then u > 0 in the original domain Ω. Here,
λ1 (Ω) and u− are defined as in Theorem 2.

Proof Since property ii) in Theorem 2 clearly holds

when f (u) = |u|p−1
u (p > 1), this corollary holds.

(QED)

3. Numerical example

In this section, we will present two numerical examples
where the positiveness of solutions to (4) is verified. In

both examples, we set L = ∆ and f (u) = u3(= |u|2 u),
where ∆ is the Laplace operator. All computations were
carried out on a computer with Intel Xeon E7-4830 at
2.20 GHz×40, 2 TB RAM, CentOS 6.6, and MATLAB
2012b. All rounding errors were strictly estimated using
toolboxes the INTLAB version 9 [11] and KV library
version 0.4.16 [12] for verified numerical computations.
Therefore, the accuracy of all results was mathemati-
cally guaranteed. In this section, B (x, r; ∥ · ∥) denotes
the closed ball whose center is x, and whose radius is
r ≥ 0 in the sense of the norm ∥ · ∥.
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For the first example, we selected the case in which
Ω = (0, 1)2 ⊂ R2. We computed an approximate so-
lution û to (4), which is displayed in Fig. 1, using the
Fourier-Galerkin method (the number of basis elements
was N ×N). We then proved the existence of a solution
u to (4) in an H1

0 -ball B(û, r1; ∥ · ∥H1
0 (Ω)) and an L∞-

ball B(û, r2; ∥ · ∥L∞(Ω)), both centered around the ap-
proximation û, using the method in [2] combined with
the method in [6]. Note that the verified solution has
the regularity to be in C2 (Ω) ∩ C

(
Ω
)
regardless of the

regularity of the approximation û, owing to the argu-
ment given in Remark 3. Table 1 presents the verifica-
tion result, which ensures the positiveness of the verified
solution to (4) centered around û, owing to the con-
dition that sup{(u− (x))2|x ∈ Ω} < λ1. Here, the up-
per bounds of sup{(u− (x))2|x ∈ Ω} were calculated by

(|min{û (x) |x ∈ Ω}|+ r2)
2
with verification.

Remark 5 The verified solution centered around û
corresponds to the unique solution of (1), since the prob-
lem  −∆u = up in Ω,

u > 0 in Ω,
u = 0 on ∂Ω

admits only one solution for p > 1 when Ω ⊂ R2 is
bounded and convex (a proof can be found in, e.g., [13]).
On the other hand, the problem without the property of
positivity, given by{

−∆u = u3 in (0, 1)2,
u = 0 on ∂(0, 1)2,

(7)

admits an infinite number of solutions. Indeed, if u is a
solution to (7), then v (x, y) := a−1u

(
a−1x, a−1y

)
and

−v are solutions to{
−∆v = v3 in (0, a)2,
v = 0 on ∂(0, a)2.

Therefore, by setting a = 2−m (m = 1, 2, 3, . . . ) as one
example, one can construct an infinite number of so-
lutions to (7) through suitable symmetrical reflections.
In Fig. 2, we present some approximations of solutions
to (7). Solutions to (7) might exist in neighborhoods of
these approximations; however, they are not allowed to
be positive. Just for reference, we indicate here that the
minimum value of an approximate solution to (7) should
be greater than −

√
λ1(= −

√
2π ≤ −4.44) to ensure that

sup{(u− (x))2|x ∈ Ω} < λ1, and the approximations in
Fig. 2 do not satisfy this condition.

For our second example, we selected the case in which
Ω is the pentagon shaped domain Ω displayed in Fig. 3.
The vertexes of Ω are (1,−0.1), (0.5, 1), (−0.5, 0.5),
(−0.75,−0.875), and (0.5,−0.75). In this case, the prob-
lem (1) again admits only one solution. We computed the
approximate solution û to (4), as displayed in Fig. 3, us-
ing a piecewise quadratic finite element basis (the mesh
size was 0.02525). Using the same method as in the first
example, as detailed in [2, 6], we verified the existence
of a solution to (4) in the balls B(û, r1; ∥ · ∥H1

0 (Ω)) and

B(û, r2; ∥ · ∥L∞(Ω)), which also has C2 regularity. It can
be seen from Table 2 that the positiveness of the verified

Fig. 1. An approximation of the unique solution to (1) on the
square Ω = (0, 1)2.

Fig. 2. Approximations of nonpositive solutions to (4) on the
square Ω = (0, 1)2.
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Fig. 3. An approximate solution to (4) on the pentagon shaped
domain Ω.

solution is again ensured. The lower bound of λ1 (de-
noted by λ1 in Table 2) was verified using the method
from [14]. The upper bound of sup{(u− (x))2|x ∈ Ω} in
Table 2 was calculated in the same way as in the first
example.

4. Conclusion

We have proposed a numerical method for verifying
the positiveness of solutions to (4). We have demon-
strated that the positiveness of solutions to (4) can be
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Table 1. Verification result for the approximation displayed in
Fig. 2 on the square Ω = (0, 1)2.

N r1 r2 sup(u− (x))2 λ1

10 3.03867E-02 9.88804E-02 9.77733E-03 (19 ≤)2π2

20 1.59823E-06 5.21958E-06 2.72440E-11 ′′

30 6.34399E-11 2.07371E-10 4.30024E-20 ′′

Table 2. Verification result on the pentagon shaped domain Ω.

r1 r2 sup(u− (x))2 λ1

2.55806E-02 1.26535E-01 4.00060E-02 9.12780

verified using a simple calculation on the basis of The-
orem 2, which provides a sufficient condition for the
positiveness of solutions to elliptic problems. We have
also noted that this method can be naturally applied to
other boundary value problems, although we focused on
homogeneous Dirichlet boundary value problems in this
paper.
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