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Abstract

We discuss the differences of local risk minimization (LRM) and delta hedging strategies,
in exponential Lévy models, where delta hedging strategies in this paper are defined under
the minimal martingale measures (MMM). First of all we give inequality estimations for the
differences of LRM and delta hedging strategies, and then show numerical examples for the
two typical exponential Lévy models, Merton models and variance Gamma (VG) models.
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1. Introduction

The concept of local risk minimization (LRM) is
widely used for contingent situations in an incomplete
market framework. LRM is closely related to the equiva-
lent martingale measure which is well known as the min-
imal martingale measure (MMM). For more details on
LRM, see [1,2]. Delta hedging strategies, which are also
well-known and often used by practitioners, are given by
differentiating the option price under a certain martin-
gale measure with respect to the underlying asset price.
Due to the relationship between LRM and the MMM,
we consider delta hedging strategies under the MMM.
Its precise definition will be introduced in Section 2.
The paper [2] showed explicit representations of LRM

for call options by using Malliavin calculus for Lévy
processes based on the canonical Lévy space. Carr and
Madan introduced a numerical method for valuing op-
tions based on the fast Fourier transform (FFT) in [3].
In [1], the authors adopted Carr and Madan’s method to
compute LRM of call options for exponential Lévy mod-
els. In particular, the authors discussed Merton models
and variance Gamma (VG) models as typical examples
of exponential Lévy models.
This paper aims to illustrate, based on [2], how differ-

ent is LRM from delta hedging strategies for call options
in exponential Lévy models. Furthermore, we show that
delta hedging strategies are easily calculated by using
the numerical scheme developed in [1]. We give inequal-
ity estimations of the differences of LRM and delta hedg-
ing strategies for the typical exponential Lévy models,
known as Merton models and VG models. Merton mod-
els are composed of a Brownian motion and compound
Poisson jumps with normally distributed jump sizes. VG
models, which are exponential Lévy processes with in-
finitely many jumps in any finite time interval and no

Brownian component, are the second example. We show
that the difference of LRM and delta hedging strate-
gies converges to zero when moneyness tends to zero or
infinity. In addition to this, we give numerical results
of the difference of LRM and delta hedging strategies
since there are mathematical difficulties to follow the
behaviours of the option prices around at the money.

2. Notations and preliminaries

We consider a financial market composed of one risk-
free asset and one risky asset with finite maturity T >
0. For simplicity, we assume that market’s interest rate
is zero, that is, the price of the risk-free asset is 1 at
all times. The fluctuation of the risky asset is assumed
to be described by an exponential Lévy process S on a
complete probability space (Ω,F ,P), described by

St := S0 exp

(
µt+ σWt +

∫
R0

xÑ([0, t], dx)

)
for any t ∈ [0, T ], where S0 > 0, µ ∈ R, σ > 0, and
R0 := R \ {0}. Here W is a one-dimensional Brownian

motion and Ñ is the compensated version of a Poisson
random measure N . Denoting the Lévy measure of N
by ν, we have Ñ([0, t], A) = N([0, t], A)− tν(A) for any
t ∈ [0, T ] and A ∈ B(R0). Moreover, S is also a solution
of the stochastic differential equation

dSt = St−

[
µSdt+ σdWt +

∫
R0

(ex − 1)Ñ(dt, dx)

]
,

where µS := µ+(1/2)σ2+
∫
R0
(ex−1−x)ν(dx). Without

loss of generality, we may assume that S0 = 1 for sim-
plicity. Now, defining Lt := logSt for all t ∈ [0, T ], we
obtain a Lévy process L. Moreover, dMt := St−

[
σdWt+∫

R0
(ex − 1)Ñ(dt, dx)

]
is the martingale part of S.

Our focus is to compare LRM to delta hedging strate-
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gies with respect to a call option (ST −K)+ with strike
price K > 0. We first give some preparations and as-
sumptions to introduce an explicit LRM representation
of such options in exponential Lévy models. Define the
MMM P∗ as an equivalent martingale measure under
which any square-integrable P-martingale orthogonal to
M remains a martingale. Its density is given by

dP∗

dP
= exp

(
−ξWT − ξ2

2
T+

∫
R0

log(1− θx)N([0, T ], dx)

+T

∫
R0

θxν(dx)

)
,

where

ξ :=
µSσ

σ2 +
∫
R0
(ey − 1)2ν(dy)

,

θx :=
µS(ex − 1)

σ2 +
∫
R0
(ey − 1)2ν(dy)

for x ∈ R0. In the development of our approach, we rely
on the following assumption.

Assumption 1

(1)
∫
R0
(|x|∨x2)ν(dx) <∞, and

∫
R0
(ex−1)nν(dx) <∞

for n = 2, 4.

(2) 0 ≥ µS > −σ2 −
∫
R0
(ex − 1)2ν(dx).

The first condition ensures that µS , ξ, and θx are well
defined, the square integrability of L, and the finite-
ness of

∫
R0
(ex − 1)nν(dx) for n = 1, 3. The second

condition guarantees that θx < 1 for any x ∈ R0.
Moreover, by the Girsanov theorem, W P∗

t := Wt + ξt

and ÑP∗
([0, t], dx) := θxν(dx)t + Ñ([0, t], dx) are a P∗-

Brownian motion and the compensated Poisson random
measure ofN under P∗, respectively. We can then rewrite
Lt as Lt = µ∗t + σW P∗

t +
∫
R0
xÑP∗

([0, t], dx), where

µ∗ := −(1/2)σ2 +
∫
R0
(x − ex + 1)(1 − θx)ν(dx). Note

that L is a Lévy process even under P∗, with Lévy mea-
sure given by νP

∗
(dx) := (1 − θx)ν(dx). LRM will be

given as a predictable process LRMt, which represents
the number of units of the risky asset the investor holds
at time t. We introduce a representation of LRM for call
option. We define

I1 := EP∗[1{ST>K}ST | Ft−], (1)

I2 :=

∫
R0

EP∗[(ST e
x −K)+ − (ST −K)+ | Ft−]

× (ex − 1)ν(dx), (2)

where F = {Ft}t∈[0,T ] is the P-completed filtration gen-
erated by W and N . By using these symbols, we can
write an explicit representation of LRM for call option
(ST −K)+ as follows:

Proposition 2 ([2, Proposition 4.6]) For any K >
0 and t ∈ [0, T ],

LRMt =
σ2I1 + I2

St−

[
σ2 +

∫
R0
(ex − 1)2ν(dx)

] . (3)

Next, we introduce integral representations of I1 and
I2 given in [2] in order to show we can adopt Carr and
Madan’s method. The characteristic function of LT−t

under P∗ is denoted by ϕT−t(z) := EP∗[eizLT−t ] for z ∈
C. We induce an integral representation for I1 with ϕT−t

firstly.

I1 = EP∗[1{ST>K} · ST | Ft−]

=
1

π

∫ ∞

0

K−iv−α+1

α− 1 + iv
ϕT−t(v − iα)Sα+iv

t− dv

=
ek

π

∫ ∞

0

e−i(v−iα)kψ1(v − iα)dv (4)

where k := logK and ψ1(z) :=
(
ϕT−t(z)S

iz
t−
)
/(iz − 1)

and α ∈ (1, 2]. Note that the right-hand side is indepen-
dent of the choice of α. We turn next to I2. Denoting
ψ2(z) :=

(
ϕT−t(z)S

iz
t−
)
/[(iz − 1)iz] and ζ := v − iα, we

have

I2 =

∫
R0

EP∗[(ST e
x −K)+ − (ST −K)+ | Ft−]

× (ex − 1)ν(dx)

=
1

π

∫ ∞

0

K−iζ+1

∫
R0

(eiζx − 1)(ex − 1)ν(dx)ψ2(ζ)dv.

(5)

Note that we can not calculate (5) numerically as it
stands, because it is not possible to compute the integral∫
R0
(eiζx − 1)(ex − 1)ν(dx) directly. Thus, we introduce

model-dependent calculations for Merton models in Sec-
tion 3 and for VG models in Section 4, respectively. Re-
garding LRMt, I1, and I2 as functions of St− and K,
we have Ii(St−,K)/St− = Ii(1,K/St−) for i = 1, 2. We
obtain

LRMt(St−,K) =
σ2I1(1,K/St−) + I2(1,K/St−)

σ2 +
∫
R0
(ex − 1)2ν(dx)

from (3). As a result, LRMt is given as a function of
K/St− =: χt−, where χt− is called moneyness. Thus,
we denote LRMt by LRMt(χt−). Hereinafter we fix α ∈
(1, 2] arbitrarily. Moreover, we denote ζ := v − iα for
v ∈ R, so we may regard ζ as a function of v.
Next, we define delta hedging strategies.

Definition 3 For any K > 0 and s > 0, a delta hedg-
ing strategy under the minimal martingale measure is
defined as

∆P∗

t (χt−) :=
∂EP∗[(ST −K)+ | St− = s]

∂s
.

Remark that the above definition of delta hedging strate-
gies coincide with the usual delta hedging strategies in
the case of Black–Scholes. The next theorem follows from
the direct calculation.

Theorem 4

∆P∗

t (χt−) =
I1
St−

.

Remark 5 Using the numerical scheme developed in
[1], we can calculate ∆P∗

t (χt−) easily from Theorem 4.

Remark 6 The paper [4] introduced the definition of
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∆-strategies which are generalized delta hedging strate-
gies. The authors derived semi-explicit formulas for the
mean-squared hedging error of a European-style contin-
gent claim in terms of ∆-strategies. This has been done
for delta hedging strategies including Black-Scholes hedg-
ing strategies. They also showed two numerical examples.
First, they compared the performance of Black-Scholes
strategies and variance-optimal strategies in the normal
Gaussian Lévy model. Second, they assessed the hedging
errors of Black-Scholes strategies, the delta hedge and the
variance-optimal strategy in a diffusion-extended CGMY
Lévy model. As in Example 3.2, they discussed the delta
hedge by computing the derivatives of a price process with
respect to the underlying exponential Lévy models. This
delta hedge is equivalent to our ∆P∗

t .

3. Merton jump-diffusion models

We consider the case where L is given as a Merton
jump-diffusion process, which consists of a diffusion com-
ponent with volatility σ > 0 and compound Poisson
jumps with three parameters, m ∈ R, δ > 0, and γ > 0.
Note that γ represents the jump intensity, and that the
sizes of the jumps are distributed normally with mean
m and variance δ2. Thus, its Lévy measure ν is given by

ν(dx) =
γ√
2π δ

exp

(
− (x−m)2

2δ2

)
dx.

Note that the first condition of Assumption 1 is satis-
fied for any m ∈ R, δ > 0, and γ > 0. We consider
only parameter sets satisfying the second condition of
Assumption 1.

3.1 Mathematical preliminaries
Our aim here is to give an inequality estimation of

|LRMt − ∆P∗

t |. An analytic form of ϕT−t was given in
[1, Proposition 3.1] and of νP

∗
can be seen in [1, Propo-

sition 3.2] also.

Theorem 7 There exists a positive constant C such
that

|LRMt(χt−)−∆P∗

t (χt−)| ≤ Cχ1−α
t− . (6)

We obtain, furthermore,

lim
χt−→0

|LRMt(χt−)−∆P∗

t (χt−)| = 0. (7)

This constant C can be written explicitly, and depends
on the model parameters. We only give a rough proof
for Theorem 7 here.

Step 1. Eq. (7) is shown by Lebesgue’s dominated con-
vergence theorem.

Step 2. Eq. (6) is implied by the following lemma:

Lemma 8 ([1, Proposition 3.4]) We have

|ϕT−t(v − iα)| ≤ C1 exp
(
−σ

2v2(T − t)

2

)
for any v ∈ R, where

C1 := exp

(
(T − t)

[
αµ∗ +

σ2α2

2

+

∫
R0

(eαx − 1− αx)νP
∗
(dx)

])
.
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Fig. 1. Merton models, plotted |LRM0.5 −∆P∗
0.5|.

This lemma implies the next estimation:

|LRMt −∆P∗

t | ≤ C1C2
σ
√
2π(T − t)

χ1−α
t−

σ2 +
∫
R0
(ex − 1)2ν(dx)

= Cχ1−α
t−

for some C2 depending on the parameters m, δ and α.

3.2 Numerical results

We compute |LRMt − ∆P∗

t | with the FFT. In this
subsection, we provide a numerical result for a Merton
jump-diffusion model with parameters T = 0.5, Lt = 0,
µ = −0.7, σ = 0.2, γ = 1, m = 0, and δ = 1. Note that
µS is given by −0.03, which satisfies the second condi-
tion of Assumption 1. We compute and plot the data of
|LRM0.5 − ∆P∗

t | shown as Fig. 1. FFT parameters are
chosen as N = 214, η = 0.025 and α = 1.75.

4. Variance Gamma models

We now consider the case where L is given as a vari-
ance Gamma process, which has three parameters κ > 0,
m ∈ R, and δ > 0. This is defined as a time-changed
Brownian motion with volatility δ, drift m, and subordi-
nator Gt, where Gt is a Gamma process with parameters
(1/κ, 1/κ). In summary, L is represented as

Lt = mGt + δBGt
for t ∈ [0, T ],

where B is a one-dimensional standard Brownian mo-
tion. Moreover, the Lévy measure of L is given by

ν(dx) = C
(
1{x<0}e

−G|x| + 1{x>0}e
−M |x|

) dx
|x|

where

C :=
1

κ
> 0,

G :=
1

δ2

√
m2 +

2δ2

κ
+
m

δ2
> 0,

M :=
1√

m2 + 2δ2

κ

δ2 − m

δ2
> 0.

In addition, we assume M > 4, which ensures that the
first condition of Assumption 1 holds. An analytic form
of ϕT−t was given in [1, Proposition 4.5], and that of νP

∗
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Fig. 2. Variance Gamma models, plotted |LRM0.5 −∆P∗
0.5|.

can be seen in [1, Proposition 4.3] also.
The following theorem is the same estimation as The-

orem 7.

Theorem 9 There exists a positive constant C such
that

|LRMt(χt−)−∆P∗

t (χt−)| ≤ Cχ1−α
t− .

We obtain, furthermore,

lim
χt−→0

|LRMt(χt−)−∆P∗

t (χt−)| = 0.

We can prove this theorem in the same manner as
Theorem 7, but Step 2 is slightly different.
In Step 2, we use the next lemma instead of Lemma 8.

Lemma 10 ([1, Proposition 4.7]) For any v ∈ R,

|ϕT−t(v − iα)| ≤ C2|v|−2C(T−t),

where

C2 = (GM)(1+h)(T−t)C [(G+ 1)(M − 1)]−h(T−t)C

× exp

(
(T − t)α

[
µ∗ + (1 + h)C

M −G

GM

−hC M −G− 2

(G+ 1)(M − 1)

])
.

4.1 Numerical results

In this subsection, we compute |LRMt − ∆P∗

t | for a
VG model with a parameter set based on market data.
We use the Nikkei 225 index for March 2014, as in [1].
We need to set the log price Lt := log(St/S0), where
S0 is the price on 28 February 2014, which is 14841.07.
The parameters C, G, and M are estimated from the
mean, variance, and skewness of the log price by using
the generalized method of moments and the Levenberg–
Marquardt method. The values of C, G and M are
C = 2.469395026815120, G = 23.743109051760964 and
M = 24.903251787154687. For G − M ≈ −1.16, this
parameter set satisfies Assumption 1. We take T = 1
and St− = 14841.07, that is, Lt− = 0. We fix t to
0.5, the values of LRM0.5 and ∆P∗

0.5 are computed for
K = 10000, 10250, . . . , 20000. The computational results
are given as Fig. 2.

5. Conclusion

For Merton models and VG models, we have derived
inequality estimations for the differences of LRMt and
∆P∗

t . Moreover the difference converges to zero when
moneyness tends to zero or infinity. We have computed
the behaviours of |LRMt −∆P∗

t | for two cases. The first
case is a Merton model with an artificial parameter set.
The other is a VG model with a parameter set based on
market data. Numerical examples have shown that the
behaviours of |LRMt−∆P∗

t | are different between the two
cases. We have deduced four points from the numerical
experiments: (i) the differences in VG models have con-
verged faster than the Merton models when moneyness
tends to zero or infinity. (ii) Under the given conditions,
the values of |LRMt − ∆P∗

t | for the Merton models are
larger than that for the VG models. (iii) For the Merton
model, |LRMt − ∆P∗

t | has the maximum value around
at the money. (iv) For the VG model, the behaviours of
|LRMt −∆P∗

t | are unstable around at the money.

Acknowledgments

Takuji Arai was supported by JSPS Grant-in-Aid for
Scientific Research (C) No.15K04936.

References

[1] T. Arai, Y. Imai and R. Suzuki, Numerical local risk mini-
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