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Abstract

We consider a contour integral-based eigensolver that finds eigenvalues in a given domain and
the corresponding eigenvectors of the generalized eigenvalue problem. In the contour integral-
based eigensolver, quadrature points are placed in the complex plane in order to approximate
the contour integral. When eigenvalues exist near a quadrature point, the accuracy of other
eigenvalues is deteriorated. We herein propose a method by which to recover the accuracy
of the eigenpairs when eigenvalues exist near a quadrature point. A numerical experiment is
conducted in order to verify that the proposed method is efficient.
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1. Introduction

The generalized eigenvalue problem involves finding
eigenvalues λ ∈ C and the corresponding eigenvectors
x ∈ Cn\{0} that satisfy Ax = λBx, A,B ∈ Cn×n. We
assume that the matrix pencil zB−A is diagonalizable.
In [1, 2], a contour integral-based eigensolver called the
Sakurai-Sugiura method (SS method) was proposed for
the generalized eigenvalue problem. The SS method can
find eigenvalues located inside a given region and the
corresponding eigenvectors by using a contour integral
along a boundary of the given domain. The contour inte-
gral is approximated using some numerical integration
rule. Then, quadrature points are on the boundary of
the region. The quadrature points are usually set in the
complex plane, e.g., along a circle or an ellipse. For the
case that the matrices A,B are real and zB − A has
only real eigenvalues, an approach using real quadrature
points was recently proposed [3].
When some eigenvalues exist near a quadrature point,

the accuracy of other eigenpairs is deteriorated. Partic-
ularly, when using the real quadrature points for real
eigenvalues, there is a higher probability that eigenvalues
exist near a quadrature point than in the case of quadra-
ture points in the complex plane. In the present paper,
we propose a method to recover the accuracy of the tar-
get eigenpairs without moving the quadrature points.
The remainder of the paper is organized as follows. In

the next section, we introduce the SS method. In Sec-
tion 3, we discuss the reason for the accuracy deterio-
ration. In Section 4, we present the proposed method.
Its accuracy is discussed in Section 5. A numerical ex-
ample of the proposed method is presented in Section 6.
Finally, our conclusions are presented in Section 7.

2. Contour integral-based eigensolver

Let λi,xi, i = 1, 2, . . . , n be eigenvalues and the corre-
sponding eigenvectors, and letm be the number of eigen-
values located in a certain open domain Ω ⊂ C. More-
over, let L,K ∈ N satisfy LK ≥ m, and let V ∈ Cn×L

be an input matrix, e.g., a random matrix. We define
matrices S and Sk as follows:

S := [S0, S1, . . . , SK−1],

Sk :=
1

2πi

∮
Γ

zk(zB −A)−1BV dz, (1)

where Γ is a Jordan curve surrounding the domain Ω.
If the rank of the matrix S is m, then the range of S is
spanned by the eigenvectors corresponding to the eigen-
values in Ω. In the numerical computation, the contour
integral in (1) is approximated by the following N -point
numerical integration:

S ≈ Ŝ := [Ŝ0, Ŝ1, . . . , ŜK−1],

Sk ≈ Ŝk :=
N−1∑
j=0

wjz
k
j (zjB −A)−1BV, (2)

where wj , j = 0, 1, . . . , N − 1 are weights corresponding
to the quadrature points. The approximate eigenvalues
in Ω and the corresponding eigenvectors are extracted
from Ŝ by the Rayleigh-Ritz procedure. The algorithm
of the SS method is shown in Algorithm 1. In practice,
for accurate computation scaled quadrature points are
used instead of zkj .
The quadrature points are usually placed along a cir-

cle or an ellipse. If the matrices A,B are real and zB−A
has only real eigenvalues, using real quadrature points
can reduce the memory requirements and the compu-
tational cost because only real arithmetic is required.
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Algorithm 1 Sakurai-Sugiura method

Input: L,K,N ∈ N, V ∈ Cn×L, (zj , wj)
Output: eigenpairs (λi,xi), i = 1, 2, . . . , LK
1: Solve linear equations (zjB−A)Yj = BV for Yj , j =

0, 1, . . . , N − 1.
2: Compute Ŝk =

∑N−1
j=0 wjz

k
j Yj , k = 0, 1, . . . ,K − 1.

3: Construct an orthogonal basis Q from Ŝ.
4: Compute the eigenpairs (θi,ui) of QHAQu =

θQHBQu.
5: Set (λi,xi) = (θi, Qui), i = 1, 2, . . . , LK.

One way to choose real quadrature points is to use the
Chebyshev points [3].

3. Accuracy deterioration of the eigen-

pairs

When some eigenvalues are near a quadrature point,
namely, zj′ , the matrix zj′B−A becomes ill-conditioned.
Additionally, as will be shown in Section 6, the eigen-
pairs except for the eigenvalues that are near zj′ are
obtained with low accuracy, even if the linear equation
(zj′B −A)Yj′ = V is solved with sufficiently high accu-
racy. In this section, we discuss the reason of the accu-
racy deterioration.

3.1 Filter function of the contour integral-based eigen-
solver

Let yi, i = 1, 2, . . . , n be left eigenvectors correspond-
ing to the eigenvalues λi, i = 1, 2, . . . , n, and let vℓ be
the ℓ-th column vector of the input matrix V . For Ŝk in
(2), the following proposition holds [4].

Proposition 1 The ℓ-th column vector of Ŝk denoted
by ŝk,ℓ is represented as follows:

ŝk,ℓ =
n∑

i=1

yH
i Bvℓfk(λi)xi, fk(λi) :=

N−1∑
j=0

wjz
k
j

zj − λi
.

(3)
We also have fk(λ) = λkf0(λ), k = 1, 2, . . . ,K − 1 if the
weights satisfy the following conditions:

N−1∑
j=0

wjz
k
j

{
̸= 0, k = −1.
= 0, k = 0, 1, . . . , N − 2.

(4)

We call fk(λ) defined in Proposition 1 the filter function.
Proposition 1 shows that calculating Ŝk is equivalent to
multiplying each eigen-component included in V by the
filter function fk(λi).
The filter function f0(λ) for a circle centered at the

origin with radius 1 and N = 16 is shown in Fig. 1.
The absolute value of the filter function f0(λ) is ap-
proximately 1 inside the unit circle. However, since
zj , j = 0, 1, . . . , N − 1 are poles of the filter function,
the filter function rises suddenly near the quadrature
points. In the outer region of the unit circle, |f0(λ)| de-
creases gently. The absolute value of the filter function
for the Chebyshev points on the interval [−1, 1] with
N = 16 is shown in Fig. 2. The filter function oscillates
on the interval [−1, 1] because the poles are on the in-
terval [−1, 1].

Fig. 1. Absolute value of the filter function f0(λ) on the complex
plane. The quadrature points are placed along a circle centered
at the origin with radius 1 for N = 16.
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Fig. 2. Absolute value of the filter function f0(λ) on the real axis.

The quadrature points are the Chebyshev points in the interval
[−1, 1] for N = 16.

3.2 Reason for the accuracy deterioration

We consider the case that the eigenvalue λi′ is near
zj′ such that |fk(λi′)| ≫ |fk(λi)|, i ̸= i′. We assume
that ||xi||2 = 1 and |yH

i′ Bvℓ| ≈ |yH
i Bvℓ|, i ̸= i′. This

assumption holds when the input matrix is set as a ran-
dom matrix. We define αi,k,ℓ := fk(λi)y

H
i Bvℓ. Then,

|αi′,k,ℓ| ≫ |αi,k,ℓ|, i ̸= i′. From Proposition 1, we have

1

αi′,k,ℓ
ŝk,ℓ = xi′ +

n∑
i=1,i ̸=i′

αi,k,ℓ

αi′,k,ℓ
xi,

∣∣∣∣ αi,k,ℓ

αi′,k,ℓ

∣∣∣∣ ≪ 1.

From the above discussion, the Rayleigh-Ritz procedure
with the subspace spanned by ŝk,ℓ provides high accu-
racy eigenpair for (λi′ ,xi′). In contrast, other eigenpairs
are obtained with low accuracy due to rounding error.

4. Proposed method for recovering the

accuracy

In Section 3, we observed that the accuracy deterio-
ration is caused by the oscillation of the filter function.
Here, we propose a method to recover the accuracy by
suppressing the oscillation. We assume that there are
one or more eigenvalues near just one quadrature point
and the linear equations are solved with sufficiently high
accuracy.
Since a large absolute value of the filter function of

the eigenvalues near a quadrature point adversely af-
fects the accuracy of the eigenpairs, we need to pre-
vent this influence. The following approach is a simple
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Fig. 3. Absolute value of the filter function f∗
0 (λ) for j

′ = 13 and
f0(λ) on the real axis. The quadrature points (‘+’ and ‘×’) are
the Chebyshev points on the interval [−1, 1] for N = 16.

method for improving the accuracy of the eigenpairs.
After obtaining the approximate eigenpairs by the SS
method, we apply the SS method again with quadrature
points set away from the approximate eigenvalues. As
a result, improved approximate eigenpairs are obtained.
However, this approach requires linear equations again.
In the SS method, the computation time for solving the
linear equations accounts for most of the total compu-
tation time [5]. Therefore, we propose a method that
avoids solving linear equations again.
We introduce a filter function f∗

k (λ) defined as follows:

f∗
k (λ) :=

N−1∑
j=0,j ̸=j′

wjz
k
j

zj − λ
.

This filter function is equivalent to fk(λ) with wj′ = 0
and is shown in Fig. 3. By using the filter function f∗

k (λ),
the oscillation of the filter function fk(λ) around λ = zj′

is suppressed because f∗
k (λ) does not have the pole zj′ .

To avoid the accuracy deterioration due to the oscillation
of fk(λ), we propose a method based on f∗

k (λ).
After obtaining the approximate eigenpairs by the

SS method, we compute the value of the filter func-
tion at each approximate eigenvalue and find the nearest
quadrature point zj′ from the eigenvalue for which the
absolute value of the filter function is the largest. Then,
we compute the matrix Ŝ∗ by

S∗ := [Ŝ∗
0 , Ŝ

∗
1 , . . . , Ŝ

∗
K−1], Ŝ∗

k :=
N−1∑

j=0,j ̸=j′

wjz
k
j Yj . (5)

We extract the approximate eigenpairs from Ŝ∗ by the
Rayleigh-Ritz procedure. Finally, we compare the accu-
racy of the eigenpairs extracted from Ŝ∗ and the ac-
curacy of the eigenpairs obtained by the SS method.
The eigenpairs with higher accuracy are adopted as solu-
tions. The algorithm of the proposed method is shown in
Algorithm 2. Since the proposed method can obtain im-
proved eigenpairs without solving linear equations again,
the computational cost is low.

5. Accuracy of the proposed method

First, we present a theory regarding the accuracy of
the eigenpairs obtained by the SS method [4]. In this
section, we assume that the weights satisfy (4) and true

Algorithm 2 Proposed method

Input: L,K,N ∈ N, V ∈ Cn×L, (zj , wj)
Output: eigenpairs (λ∗

i ,x
∗
i ), i = 1, 2, . . . , LK

1: Apply the SS method and compute approximate
eigenpairs (λi,xi), i = 1, 2, . . . , LK.

2: Compute the values of the filter function f0(λi), i =
1, 2, . . . , LK.

3: Set i′ = arg max
i

(|f0(λi)|), j′ = arg min
j

(|λi′ − zj |).

4: Compute Ŝ∗
k , k = 0, 1, . . . ,K − 1 by (5).

5: Construct an orthogonal basis Q∗ from Ŝ∗.
6: Compute the eigenpairs (θ∗i ,u

∗
i ) of Q∗HAQ∗u∗ =

θ∗Q∗HBQ∗u∗.
7: Set (λ∗

i ,x
∗
i ) = (θ∗i , Q

∗u∗
i ), i = 1, 2, . . . , LK.

8: Set (λ∗
i ,x

∗
i ) = (λi,xi) if the accuracy of (λi,xi) is

better than (λ∗
i ,x

∗
i ).

eigenpairs (λi,xi), i = 1, 2, . . . , n, are ordered in decreas-
ing order of |f0(λi)|.
Theorem 2 We define P̂, the orthogonal projec-
tor onto the subspace range(Ŝ). Moreover, we define
PLK , the spectral projector associated with the invari-
ant subspace associated with λ1, λ2, . . . , λLK . We assume
rank(PLKV ) = L. Then, the following relation holds:

||(I − P̂)xi||2 ≤ αβi

∣∣∣∣f0(λLK+1)

f0(λi)

∣∣∣∣ ,
where α = ||X||2||X−1||2, X = [x1,x2, . . . ,xn], and βi

depends on the input matrix.

The above theorem indicates that if the subspace size
LK is sufficiently large so that |f0(λLK+1)| is sufficiently
small, the obtained eigenpairs have high accuracy.
In [4], the following case is also considered. The so-

lution Yj′ of the linear equation at the j′-th quadrature
point is contaminated, namely, Yj′ is replaced by Yj′+E,
where a matrix E ∈ Cn×L satisfies rank(E) = L. Here,
we define Ŝ′ and Ŝ′

k as follows:

Ŝ′ := [Ŝ′
0, Ŝ

′
1, . . . , Ŝ

′
K−1], Ŝ′

k :=

N−1∑
j=0

wjz
k
j (Yj + δj,j′E),

where δi,j is the Kronecker delta. We assume that the in-
put matrix V satisfies a similar condition as Theorem 2.
(For details, refer to [4, Theorem 3].) Then, as in
Theorem 2, a theorem regarding the accuracy of the
eigenpairs holds.

Theorem 3 We define P̂ ′, the orthogonal projector
onto the subspace range(Ŝ′). Then, the following rela-
tion holds:

||(I − P̂ ′)xi||2 ≤ αβ′
i

∣∣∣∣f0(λLK−L+1)

f0(λi)

∣∣∣∣ ,
where β′

i depends on the input matrix.

The accuracy of the eigenpairs extracted from Ŝ depends
on the (LK + 1)-st largest absolute value of the filter
function, whereas Theorem 3 indicates that the accu-
racy of the eigenpairs extracted from Ŝ′ depends on the
(LK −L+1)-st largest absolute value of the filter func-
tion.

– 3 –



JSIAM Letters Vol. 8 (2016) pp.1–4 Tetsuya Hasegawa et al.

In the proposed method, the filter function f∗
k (λ) is

used. However, the accuracy of the eigenpairs can be
analyzed by using f0(λ), not f

∗
0 (λ).

Theorem 4 We define P̂∗, the orthogonal projector
onto the subspace range(Ŝ∗). We assume rank(Yj′) = L.
Then, the following relation holds:

||(I − P̂∗)xi||2 ≤ αβ∗
i

∣∣∣∣f0(λLK−L+1)

f0(λi)

∣∣∣∣ , (6)

where β∗
i depends on the input matrix.

Proof The matrix Ŝ∗ is equal to Ŝ′ with E = −Yj′ .
Since the rank of Yj′ is L, from Theorem 3, we have (6).

(QED)

This indicates that, if the subspace size LK−L is suf-
ficiently large so that |f0(λLK−L+1)| is sufficiently small,
then the obtained eigenpairs have high accuracy, even if
the filter function f∗

k (λ) is used.

6. Numerical example

In this section, we confirm the validity of the proposed
method. We compare the relative residual of the eigen-
pairs obtained by the SS method and the eigenpairs ob-
tained by the proposed method. A matrix A is generated
as A = QTDQ, where

D = diag(0.09, 0.18, . . . , 45) ∈ R500×500,

and Q ∈ R500×500 is an orthogonal matrix. The ma-
trix B is the identity matrix. We replace the (5, 5) en-
try of the matrix D by 0.637462, which is an eigenvalue
near a quadrature point. The absolute value of the fil-
ter function of the eigenvalue 0.637462 is approximately
5.7 × 104. The algorithm is implemented in MATLAB
R2013b. In order to satisfy the assumption that the
linear equations are solved with high accuracy, we use
multiple-precision arithmetic (25 digits) when solving
the linear equations. After solving the linear equations,
double-precision arithmetic is used. The linear equations
are solved via the MATLAB command “\”. The input
matrix V is a random matrix generated by a uniform
distribution. The parameters of the SS method are N =
16, L = 7, and K = 8. We compute eleven eigenvalues in
the interval [−1, 1] and the corresponding eigenvectors.
We use the Chebyshev points as the quadrature points.
The quadrature points zj and the corresponding weights
wj are set as zj = cos(θj), wj = (−1)j/N · sin(θj), where
θj = (2j + 1)π/(2N), j = 0, 1, . . . , N − 1. The computa-
tional results are shown in Table 1.
Among the eigenpairs obtained by the SS method,

only the eigenvalue (0.637462) near a quadrature point
has high accuracy. The approximate eigenvalues whose
absolute values of the filter function are smaller than
that of the eigenvalue 0.637472 have lower accuracy. In
the proposed method, the accuracy of the eigenpairs are
improved.
The relative residual of the eigenvalue 0.637462 ex-

tracted from Ŝ∗ is approximately 1.6×10−11. The eigen-
components corresponding to eigenvalues near the ex-
tracted quadrature point zj′ included in Ŝ∗ are smaller

than its eigen-components included in Ŝ, and the ac-
curacy of the eigenpairs becomes lower [4]. Thus, the

Table 1. Relative residuals for each eigenpair in [-1,1].

relative residual

Eigenvalue Filter value SS method Proposed method

0.09 7.3 6.7× 10−11 4.0× 10−13

0.18 1.0 5.8× 10−10 2.9× 10−12

0.27 2.8 6.1× 10−10 9.3× 10−13

0.36 1.1 2.1× 10−9 5.4× 10−12

0.45 2.4 1.6× 10−9 3.3× 10−12

0.54 1.1 2.8× 10−9 2.6× 10−11

0.637462 5.7× 104 3.2× 10−14 3.2× 10−14

0.72 1.0 1.7× 10−9 1.5× 10−11

0.81 1.3 1.5× 10−9 5.4× 10−12

0.90 2.1 5.8× 10−10 1.4× 10−12

0.99 1.1 7.8× 10−10 5.2× 10−12

accuracy of the eigenvalue 0.637462 extracted from Ŝ∗

deteriorates. According to the algorithm of the proposed
method, the approximate eigenpair obtained by the SS
method is adopted.

7. Conclusion

In the present paper, we stated the reason why the
eigenpairs obtained by the SS method may have a low
accuracy when eigenvalues are near a quadrature point.
We proposed a method to recover the accuracy of the
eigenpairs. If the subspace size LK − L is sufficiently
large, the approximate eigenpairs obtained via the pro-
posed method have high accuracy. Moreover, the pro-
posed method has low computational cost because re-
solving the linear equations is not necessary. We demon-
strated the validity of the proposed method.
The proposed method is effective when eigenvalues are

near only one quadrature point. However, if eigenvalues
are near several quadrature points, the proposed method
may not be valid due to insufficiency of the subspace size.
Methods for improving the accuracy of the eigenpairs
remain a subject for future research.
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