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Abstract

In the field of industrial shape design, the plane curves which have radii of curvature propor-
tional to the power of linear functions of their arc-length parameters are called the log-aesthetic
curves (LAC) and have been investigated. However, the well-used curves, for example, the
parabolic arcs and the typical curves of Mineur et al. are not contained in the family of LACs.
In this letter we generalize LAC by the Hamiltonian formalism. This extended family of curves
contains some well-known plane curves in classical differential geometry.
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1. Introduction

This letter deals with the mathematical formulation
of certain family of plane curves with monotonous cur-
vature, which are used in the digital style design of in-
dustrial products.
From the designers’ viewpoints Harada et al. [1–3] an-

alyzed quantitatively characteristics of the plane curves
with monotonous curvature radii utilized in the style
design of industrial products such as automobiles. Their
important observation is that “logarithmic distribution
diagrams of curvature” (LDDC) of automobiles’ keylines
are approximately linear.
In [1–3] LDDC is defined by using the histogram, but

in this letter we use the analytic definition formulated
by Nakano et al. [4] and Miura et al. [5]. Let r(s) =
(x(s), y(s)) be a smooth plane curve with monotonous
curvature parametrized by the arc-length parameter s
and ρ = ρ(s) the radius of curvature. Then LDDC of
the curve r(s) is a curve on the XY plane defined by
(X(s), Y (s)) = (log ρ, log(|ds/d(log ρ)|)).
Miura et al. [5] derived the general formula of the ra-

dius of curvature of aesthetic curves whose LDDC are
given by a straight line with the slope α as follows:

ρ(s) =

{
c0e

c1s (α = 0),

(c0s+ c1)
1/α (α ̸= 0).

(1)

Yoshida et al. [6] clarified the overall shapes of the above
aesthetic curves. Now the above family of curves is called
the log-aesthetic curve (LAC) and has been studied ac-
tively in the field of digital style design. The family of
LACs contains well-known curves with monotonous cur-
vature. For example, α = −1 corresponds to the clothoid
curves and α = 1 corresponds to the logarithmic spirals.
The authors [7] noticed that the slopes of LDDC of

LAC can be formulated from the similarity geometry.

In the similarity geometry the angular parameter θ is
invariant in stead of the arc-length and the invariant
S(θ) := −ρθ/ρ is called the similarity curvature of the
curve r(θ) = (x(θ), y(θ)). Then the slope α of LDDC of
LAC can be expressed by

α =
Sθ

S2
+ 1. (2)

For the rest of this letter we refer the slope of LDDC to
γ + 1, because we want to use α for the other purpose.
Rewriting (2), we show that the similarity curvature of
LAC satisfies the Riccati equation of the constant coef-
ficient γ of the following form:

Sθ = γS2. (3)

Solving (3) by quadrature, we obtain the similarity cur-
vature of LAC as follows:

S(θ) =
−1

γθ + δ
, (4)

where δ is certain integral constant.
We will take certain family of plane curves including

parabolas as research targets.

2. Parabolic arcs and typical curves of

Mineur et al.

Vertex-free parabolic arcs are often-used plane curves
with monotonous curvature in the industrial style de-
sign. Harada et al. [1–3] also regarded parabolas as im-
portant examples of aesthetic curves in their early re-
searches. However, since the LDDC of parabolic arcs
are only approximately linear, the general expressions
of LAC, which were developed by Miura et al. [5], can
not be applied to the parabolic arcs.
From the viewpoint of the similarity geometry, the

similarity curvature of the parabolic arc y = x2(x ≥ 0)
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parametrized by the angular parameter θ(0 ≤ θ < π/2)
is expressed by

S(θ) = −3 tan(θ) (5)

and satisfies the Riccati equation

Sθ =
−1

3
S2 − 3. (6)

Eq. (5) and (6) show that the parabola differs from LAC.
Other examples of the aesthetic curves excluded from

LAC are the typical curves of Mineur et al. [8]. The
typical curve of degree m(m ≥ 3) has the features gen-
eralizing the parabola. The similarity curvature of the
typical curve of degree m(m ≥ 3) satisfies the following
Riccati equation

Sθ =
−1

(m+ 1)
S2 − (m+ 1)

(m− 1)2
, (7)

which is regarded as a generalization of the one of the
parabola.
Yoshida et al. [9, 10] investigated the quasi aesthetic

curves approximating the linearity of LDDC of LAC or
approximating the Taylor series expansions of LAC by
the polynomial forms.
In the next section we will investigate the quasi aes-

thetic curve whose similarity curvature satisfies the fol-
lowing Riccati equation

Sθ = γS2 + α, (8)

where γ ̸= 0, α are constants. Since the above equation
(8) is the generalization of (6) and (7), the proposed
family of the aesthetic curves includes the parabola and
the typical curves of Mineur et al. We will derive (8) by
the Hamiltonian formalism.

3. Generalization of LAC by Hamilto-

nian formalism

Let r(θ) be a smooth plane curve parametrized by
the angular parameter θ varying with the monotonous
curvature in the domain θ0 < θ < θ1. Assume that the
similarity curvature S(θ) of the curve r(θ) satisfies the
Riccati equation

Sθ = γS2 + βS + α, (9)

where γ ̸= 0 and β, α are constant coefficients.
By using the curvature radius ρ(θ) of the curve, we

define the generalized coordinate q, the generalized mo-
mentum p and the Hamiltonian H as follows:

q := ργ , (10)

p :=
exp(−βθ)

γ2
qθ, (11)

H(p, q, θ) :=
γ2 exp(βθ)

2
p2 +

α exp(−βθ)

2γ
q2. (12)

We have the above Hamiltonian (12) by the suggestion of
[11, Exercise 8–35 (p.367)]. Here we remark that Miura
et al. [12, 13] investigated a variational formulation of
LAC. They used the Lagrangian based on the linearity
of LDDC. In contrast, our Hamiltonian is based on har-

monic oscillations and its idea is different from [12,13].
From the canonical equations of Hamilton

qθ =
∂H

∂p
, pθ = −∂H

∂q
, (13)

we obtain second-order linear differential equation

qθθ − βqθ + γαq = 0. (14)

From (14) the Riccati equation (9) can be derived via
the Cole-Hopf transformation

S =
−1

γ

qθ
q
. (15)

Now assume that the Hamiltonian (12) does not con-
tain the variable θ explicitly. Based on elementary ar-
guments of Hamiltonian system, we can conclude β = 0
and we have

qθθ + γαq = 0, (16)

and the Riccati equation (8) via the Cole-Hopf trans-
formation (15). Here we remark that the equation
(16) is satisfied by the eigenfunctions of the eigenvalue
(−γα) according to the second-order differential opera-
tor d2/dθ2.
The following proposition is the main result of this

letter.

Proposition 1 Under the above conditions the simi-
larity curvature S(θ) of the plane curve except circular
arcs and logarithmic spirals is classified by the sign of
the eigenvalue (−γα) of the operator d2/dθ2:

(a) case of (−γα) = 0

S(θ) =
1

a linear function of θ
,

(b) case of (−γα) < 0

S(θ) =

√
γα

γ
tan((

√
γα)θ − δ),

where δ is some real constant,
(c) case of (−γα) > 0

S(θ) =

√
−γα

(−γ)
tanh((

√
−γα)θ + δ),

or

S(θ) =

√
−γα

(−γ)
coth((

√
−γα)θ + δ),

where δ is some real constant.

Proof (a) In this case q is a linear function of θ. Since
q is not constant by excluding circular arcs, we have the
conclusion.
(b) Since q ̸= 0, we have the linear combination

q = A cos(
√
γαθ) +B sin(

√
γαθ)

with some real coefficients A,B satisfying A2 +B2 > 0.
So we can select some real constant δ such that

q =
√
A2 +B2 cos(

√
γαθ − δ),

and we reach the conclusion.
(c) We have the linear combination

q = A exp(
√
−γαθ) +B exp(−

√
−γαθ)
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Table 1. The family of parabola.

curve list (γ, α)

catenary (-1/2, -2)

cycloid (1, 1)

asteroid (1, 4)

lemniscate (-2, -2/9)

rectangular hyperbola (-2/3, -6)

with some real coefficients A,B. By using hyperbolic
functions, q is expressed as

q = (A+B) cosh(
√
−γαθ) + (A−B) sinh(

√
−γαθ).

Here we note AB ̸= 0 by excluding logarithmic spirals.
There are two cases.
(c-1) When AB > 0, we can select some real constant

δ such that

cosh(δ) = ±A+B√
4AB

,

sinh(δ) =
A−B√
4AB

.

Then we have

q = ±
√
4AB cosh(

√
−γαθ ± δ)

and

S(θ) =

√
−γα

(−γ)
tanh(

√
−γαθ ± δ),

where double-sign corresponds.
(c-2) When AB < 0, we can select some real constant

δ such that

sinh(δ) =
A+B√
−4AB

,

cosh(δ) = ± A−B√
−4AB

.

Then we have

q = ±
√
−4AB sinh(

√
−γαθ ± δ)

and

S(θ) =

√
−γα

(−γ)
coth(

√
−γαθ ± δ).

where double-sign corresponds.
(QED)

In Proposition 1 the case (a) corresponds to the log-
aesthetic curves except circular arcs and logarithmic spi-
rals. Here we will call the family of curves corresponding
to the case (b) ”the family of parabola”, because it con-
tains parabolas. The case (c) includes spirals. We will
call the family of curves corresponding to the case (c)
“the family of quasi aesthetic spirals”. Moreover we will
collectively call the curves corresponding to the case (b)
and (c) “the quasi aesthetic curves”.

4. Examples of the quasi aesthetic curves

The parabolas (6) and the typical curves (7) of the
degree m are the quasi aesthetic curves in “the fam-
ily of parabola”. It should be noted that ”the family

Fig. 1. Rectangular hyperbola.

Fig. 2. γ = 0.05, α = −1.0.

Fig. 3. γ = 1.0, α = −1.0.

of parabola” contains some well-known plane curves in
classical differential geometry. The following list (Ta-
ble 1) shows some of the examples of well-known curves
in “the family of parabola”.
Fig. 1 shows the rectangular hyperbola from ”the fam-

ily of parabola”.
The following curves (Figs. 2 and 3) are chosen from

“the family of quasi aesthetic spirals”. The curve of
Fig. 2 corresponds to γ = 0.05, α = −1.0 and q = ργ is
expressed by cosh.
The curve of Fig. 3 corresponds to γ = 1.0, α = −1.0

and q = ργ is expressed by sinh.

5. Concluding remarks and future prob-

lems

In this letter we generalized LACs to include the
parabolas and obtained the family of plane curves which
we will call the quasi aesthetic curves. The guiding prin-
ciple of our generalization is the fact that the Hamil-
tonian (12) of the quasi aesthetic curves does not con-
tain the variable θ explicitly. Remarkably, it follows that
the family of the quasi aesthetic curves contains some
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well-known plane curves in classical differential geom-
etry such as catenaries, cycloids, asteroids and lemnis-
cates.
Finally, we will add two short remarks. At first, it

turned out after we have completed the body of this let-
ter that the family of parabola contains one of the two
cases (i.e. the case where the angle difference is a lin-
ear function of the azimuth angle) of the polar-aesthetic
curves which Miura et al. [14] presented previously. Here
we remark that our approach and the one of [14] are
different. Secondly, well-known plane curves in classi-
cal differential geometry defined by polar coordinates
have been investigated by Sánchez-Reyes [15] from the
viewpoint of computer aided geometric design. But our
approach is based on the similarity geometry and is dif-
ferent from the approach of [15].
We will investigate the relation of these curves and

LACs in the forthcoming publications.
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