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Abstract

In this paper, we discuss the optimal ate pairing over Barreto-Naehrig (BN) curves. First, we
give an explicit formula for computing this pairing via elliptic nets associated to the twist
curves. Second, we consider parallel algorithms to calculate elliptic nets for computing this
pairing. Finally, we evaluate the costs of our parallel algorithms.
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1. Introduction

Background. Recently, Miller’s algorithm [1] has been
widely used for computing pairings. In 2007, Stange [2]
defined elliptic nets and proposed an alternative method
for computing pairings based on them. Both methods re-
quire O(log(m)) field operations for computing a pairing
over an m-torsion subgroup, but in many cases, the coef-
ficient hiding behind theO notation of Miller’s algorithm
is less than that based on elliptic nets. Therefore, Miller’s
algorithm has been standard for computing pairings.
In the recent years, multi-core processors have become

widely available, so parallel algorithms have become im-
portant. For Miller’s algorithm, Aranha et al. [3] pro-
posed a parallel algorithm. We here focus on paralleliz-
ing an elliptic nets algorithm. We deem that elliptic nets
algorithm is preferable for parallel computation, based
on its computational features.
Contribution. We give an explicit formula for comput-
ing the optimal ate pairing over Barreto-Naehrig (BN)
curves via the elliptic net associated to the twist curves
and construct algorithms to parallelize the computation
of this elliptic net. The calculation of an elliptic net is
executed through recurrences for the block which con-
sists of some elements in the field. Our algorithms exploit
the fact that this calculation can be executed for each
element at the same time. Therefore, it is important to
reduce the maximal cost in calculations of each element.
We construct a new block more suitable for calculating
in parallel by adding two elements to the original block.
We count the number of multiplications in the field in
these algorithms and estimate the efficiencies of our al-
gorithms for some numbers of processors.
Organization. The remainder of this paper is orga-
nized as follows. In Section 2, we recall some previous
works. In Section 3, we introduce a method to calculate
the optimal ate pairing over BN curves via the elliptic

net associated to the twist curves. In Section 4, we con-
sider parallelizing the elliptic net associated to the twist
curves and estimate the cost of computing the paral-
lelized elliptic nets. Finally, we make some concluding
remarks in Section 5.

2. Preliminaries

2.1 Elliptic nets

In 2007, Stange [2] defined elliptic nets associated to
elliptic curves and their rational points and introduced
an algorithm for computing the Tate pairing via elliptic
nets.
In this subsection, we briefly review elliptic nets. See

[2] for details.
Elliptic nets are a generalization of elliptic divisibility

sequences. We state the definition of an elliptic net as
follows:

Definition 1 ([2]) Let A be a finitely generated free
abelian group, and R be an integral domain. An elliptic
net is any map W : A → R such that the following
recurrence holds for all p, q, r, s ∈ A:

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − q)W (q + s)W (q) = 0. (1)

Given an elliptic curve E defined over a subfield of C
or a finite fieldK, and its rational points P1, . . . , Pn ∈ E,
Stange defined an elliptic net Zn → K̄ associated to E
and P1, . . . , Pn ∈ E. We denote this by WP1,...,Pn;E or
WP1,...,Pn if it is not confusing.
We now state how to compute the elements of the el-

liptic net WP,Q(m, 1),WP,Q(m, 0) (m ∈ N). Stange de-
fined a block centered on k (shown in Fig. 1) to consist of
a first vector of eight consecutive terms of the sequence
W (i, 0) centered on terms W (k, 0) and W (k+1, 0), and
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(k-1, 1) (k, 1) (k+1, 1)

(k-3, 0) (k-2, 0) (k-1, 0) (k, 0) (k+1, 0) (k+2, 0) (k+3, 0) (k+4, 0)

Fig. 1. A block centered on k.

a second vector of three consecutive terms W (i, 1) cen-
tered on the term W (k, 1).
Stange defined two functions:

• Double(V ): Given a block V centered on k, returns
the block centered on 2k.

• DoubleAdd(V ): Given a block V centered on k,
returns the block centered on 2k + 1.

From equation (1), Stange showed the following recur-
rences, which can be used for calculating the functions
above:

Proposition 2 ([2]) Let W be an elliptic net associ-
ated to an elliptic curve and two rational points. Then

W (2k−1, 0) = W (k+1, 0)W (k−1, 0)3

−W (k−2, 0)W (k, 0)3, (2)

W (2k, 0)

=
1

W (2, 0)

(
W (k, 0)W (k+2, 0)W (k−1, 0)2

−W (k, 0)W (k−2, 0)W (k+1, 0)2
)
, (3)

W (2k−1, 1)

=
1

W (1, 1)

(
W (k+1, 1)W (k−1, 1)W (k−1, 0)2

−W (k, 0)W (k−2, 0)W (k, 1)2
)
, (4)

W (2k, 1) = W (k−1, 1)W (k+1, 1)W (k, 0)2

−W (k−1, 0)W (k+1, 0)W (k, 1)2, (5)

W (2k+1, 1)

=
1

W (−1, 1)

(
W (k−1, 1)W (k+1, 1)W (k+1, 0)2

−W (k, 0)W (k+2, 0)W (k, 1)2
)
, (6)

W (2k+2, 1)

=
1

W (2,−1)

(
W (k+1, 0)W (k + 3, 0)W (k, 1)2

−W (k−1, 1)W (k+1, 1)W (k+2, 0)2
)
.

(7)

Given an elliptic curve E with Weierstrass form y2 =
x3+Ax+B and its rational points P = (x1, y1) and Q =
(x2, y2) with Q ̸= ±P , the initial values of the elliptic
net W associated to E and P,Q and the constants in
recurrences in proposition 2 are given as follows:

W (1, 0) = 1, (8)

W (2, 0) = 2y1, (9)

W (3, 0) = 3x4
1 + 6Ax2

1 + 12Bx1 −A2, (10)

W (4, 0) = 4y1(x
6
1 + 5Ax4

1 + 20Bx3
1

− 5A2x2
1 − 4ABx1 − 8B2 −A3),

(11)

W (0, 1) = W (1, 1) = 1, (12)

W (2, 1) = 2x1 + x2 −
(
y2 − y1
x2 − x1

)2

, (13)

W (−1, 1) = x1 − x2, (14)

W (2,−1) = (y2 + y1)
2 − (2x1 + x2)(x1 − x2)

2. (15)

Stange introduced a formula for computing the Tate
pairing based on elliptic nets:

Theorem 3 ([2]) Let E be an elliptic curve defined
over a finite field K, m be a positive integer, P ∈
E(K)[m] and Q ∈ E(K). Then the Tate pairing τm :
E(K)[m] × E(K)/mE(K) → K∗/(K∗)m satisfies the
following equation:

τm(P,Q) =
WP,Q(m+ 1, 1)

WP,Q(m+ 1, 0)
.

2.2 BN curves and the pairing

In this subsection, we recall the definitions of BN
curves [4] and the optimal ate pairing [5].

Definition 4 An elliptic curve E : y2 = x3 + b over
a finite prime field Fp is called a BN curve when m =
#E(Fp) is prime and there exists an integer z such that
p = 36z4 +36z3 +24z2 +6z+1 and m = 36z4 +36z3 +
18z2 +6z+1. The integer z is called the BN parameter.

The BN curve has the embedding degree k = 12. Let
π : (x, y) 7→ (xp, yp) be the Frobenius endomorphism,
and G1 and G2 be the 1-eigenspace and the p-eigenspace
of π acting on E[r], respectively. The optimal ate pairing
[5] αopt : G1 ×G2 → Fp12 is defined by

(P,Q) 7→ (f6z+2,Q(P ) · l1(P ) · l2(P ))
p12−1

m , (16)

where fn,R denotes the Miller function [1], and where l1
and l2 are the lines through (6z + 2)Q and π(Q), and
(6z + 2)Q+ π(Q) and −π2(Q), respectively. The Miller
function and the line functions are normalized.
A BN curve E has a unique sextic twist [6] Ẽ defined

over Fp2 with m|#Ẽ(Fp2); let Ψ : Ẽ → E be the associ-
ated twisting isomorphism. There exists non-square and
non-cube ξ ∈ Fp2 such that Ẽ is given by y2 = x3+B/ξ,
and Ψ is given by (x, y) 7→ (ω2x, ω3y) where ω ∈ Fp12 is

a sixth root of ξ. The preimage G̃2 = Ψ−1(G2) is con-
tained in Ẽ(Fp2); this property is exploited in calculating
the pairing.

2.3 The optimal ate pairing via elliptic nets

Ogura et al. [7] gave explicit formulae based on ellip-
tic nets for computing some variants of the Tate pairing,
which contained the optimal ate pairing. We use the fol-
lowing:

Theorem 5 ([7]) Let E be a BN curve defined over Fp

with the BN parameter z and m = #E(Fp), and G1, G2

be the subgroups of E[m] stated in Section 2.2. Then for
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P ∈ G1 and Q ∈ G2,

f6z+2,Q(P )
p12−1

m =

(
WQ,P (6z + 2, 1)

WQ,P (6z + 2, 0)

) p12−1
m

. (17)

3. Twisted elliptic nets

In an elliptic net associated to an elliptic curve and
its rational points P,Q, a first vector in its block W (i, 0)
depends only on P and a second vector W (i, 1) depends
on P and Q. Therefore, in BN curves, all elements in
the elliptic net block are in Fp12 , whereas in the twist
curves, the elements in the first vector are in Fp2 . There-
fore, we may compute the elliptic net associated to the
twist curves more efficiently than that associated to BN
curves. For computing the optimal ate pairing over BN
curves via the elliptic net associated to the twist curves,
we give the relation between the elliptic net associated
to BN curves and that associated to the twist curves:

Theorem 6 Let E be a BN curve and G1, G2, Ẽ, ω,Ψ
be as stated in Section 2.2. Let P ∈ G1, Q ∈ G2 and
P̃ , Q̃ ∈ Ẽ such that Ψ(P̃ ) = P,Ψ(Q̃) = Q. Then

WQ,P ;E(n, 0) = ω1−n2

WQ̃,P̃ ;Ẽ(n, 0), (18)

WQ,P ;E(n, 1) = ωn−n2

WQ̃,P̃ ;Ẽ(n, 1). (19)

Proof It follows immediately by induction. (QED)

We express the Miller function by the elliptic net as-
sociated to the twist curves:

Theorem 7 We use the same notation as in Theo-
rem 6. Then

f6z+2,Q(P )
p12−1

m = WQ̃,P̃ ;Ẽ(6z + 2, 1)
p12−1

m . (20)

Proof It follows from Theorems 5 and 6 and the fact
that the final exponentiation eliminates ω and the ele-
ments in Fp2 i.e., ω(p12−1)/m = 1 and x(p12−1)/m = 1 for
all x ∈ Fp2 . (QED)

We now state the main theorem of this section, which
shows how to compute the optimal ate pairing over BN
curves via the elliptic net associated to the twist curves.

Theorem 8 Let W be an elliptic curve associated to
the sextic twist Ẽ of a BN curve E defined over Fp

with the BN parameter z and m = #E(Fp). Given the
block centered on 6z + 2 of W , the optimal ate pair-
ing αopt(P,Q) over E can be obtained by calculating

the following values, where P̃ , Q̃ denote the points in
Ẽ correspond to P,Q respectively, and W (i) denotes
W (6z + 2 + i, 0) for brevity:

X = xQ̃W (0)2 −W (1)W (−1),

Y =
W (2)W (−1)2 −W (−2)W (1)2

4yQ̃
,

X̃ = ω2(p−1)xp

Q̃
W (0)2,

Ỹ = ω3(p−1)yp
Q̃
W (0)3,

Xd = X − X̃, Yd = Y − Ỹ ,

XR =

(
2b

ξ

)
W (0)6 +XX̃(X + X̃)− 2Y Ỹ ,

YR =

[
Y Ỹ −

(
3b

ξ

)
W ′(0)6

]
Yd + 3XX̃(XỸ − X̃Y ),

ZR = XdW (0),

l1 = Xd(yP̃W (0)3 − Y )− Yd(xP̃W (0)2 −X),

l2 = [XR − ω2(p2−1)xQ̃Z
2
R](yP̃Z

3
R − YR)

− [YR + ω3(p2−1)yQ̃Z
3
R](xP̃Z

2
R −XR).

Then we have

αopt(P,Q) = (W (6z + 2, 1)l1l2)
p12−1

m . (21)

Proof From the fact that the final exponentiation
eliminates ω and the elements in proper subfields of Fp12

and that the x-coordinate of Q is in Fp6 , after a lengthy

calculation, it follows that l
(p12−1)/m
i = li(P )(p

12−1)/m

for i = 1, 2, where li(P ) are the line functions described
in Section 2.2. Eq. (21) immediately follows from this
and Theorem 7. (QED)

4. Parallelization

4.1 Outline of our parallelization

In this section, we consider parallelizing the calcula-
tion of the elliptic net associated to the twist curves
of BN curves. Our strategy for the parallelization is to
distribute the elements of the elliptic net block to each
processor. We introduce two techniques for computing
the elliptic net, eliminating the multiplication by the in-
verse of W (−1, 1), and extending the block. The former
is for 4 or fewer processors, the latter is for 6 or more
processors.
First, we describe the elimination of the multiplication

by the inverse of W (−1, 1). As we stated in section 2.1,
W (1, 1) = 1 in the elliptic net associated to an elliptic
curve. Therefore, in the recurrences (4) – (7), the calcu-
lation cost of (4) is equal to that of (5), the calculation
cost of (6) is equal to that of (7), and the calculation cost
of (4) is a cost of one multiplication less than that of (6).
Defining the modified elliptic net, we may exchange the
calculation cost of (4) for that of (6). Let W̃ be an ellip-
tic net associated to the twist of a BN curve and its two
rational points; then we define the modified elliptic net
W̃ ′ of W̃ as follows:

W̃ ′(s, t) := W̃ (−1, 1)stW̃ (s, t), ∀s, ∀t ∈ Z. (22)

A modified elliptic net is also an elliptic net, so we may
compute it by proposition 2. The constants in the recur-
rence (4) – (7) of W̃ and W̃ ′ are in the following fields:

W̃ (1, 1) = 1, W̃ (−1, 1) ∈ Fp6 , W̃ (1, 1) ∈ Fp12 ,

W̃ ′(1, 1) ∈ Fp6 , W̃ ′(−1, 1) = 1, W̃ ′(1, 1) ∈ Fp12 .

Since W̃ ′(n, 0) = W̃ (n, 0) for all n ∈ N and since the fi-
nal exponentiation eliminates W̃ (−1, 1), we can replace
W̃ by W̃ ′ in Theorem 8. The calculation of Double is
based on the recurrences (4) and (6), whereas the cal-
culation of DoubleAdd is not based on the recurrence
(4). Therefore this modification reduces the calculation
cost of DoubleAdd without changing that of Double.
In the rest of this subsection, we state a technique
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(k-1, 1) (k, 1) (k+1, 1) (k+2, 1) (k+3, 1)

(k-3, 0) (k-2, 0) (k-1, 0) (k, 0) (k+1, 0) (k+2, 0) (k+3, 0) (k+4, 0)

Fig. 2. An extended block centered on k.

Table 1. Costs of the longest path.

number of
processors Double DoubleAdd

1 108m2 114m2

4 36m2 42m2

6 32m2 32m2

8 30m2 30m2

10 24m2 24m2

which reduces the cost of calculating an elliptic net,
given sufficiently many processors. If we have, for ex-
ample, 22 processors, we can compute Double or Dou-
bleAdd as follows:

Step 1. Each processor calculates one term in the re-
currences of Proposition 2.

Step 2. Half of the processors add two terms.

Step 3. Some processors multiply the sum above by the
inverse of constants. (where these inverses are pre-
computed.)

In this procedure, the calculation which has the largest
cost in Step 1 is a cost of calculating W (k− 1, 1)W (k+
1, 1)W (k + 2, 0)2 (for example) and that in Step 3 is a
cost of multiplying by the inverse ofW (2,−1). Therefore
for computing Double or DoubleAdd with 22 proces-
sors, we need the time to calculate the above operations
and that for Step 2. Because we cannot reduce this time
even if we increase the number of processors used, this
is the critical path in this algorithm.
As we stated in the above, the recurrences (4) and (5)

have no multiplications by inverses. Therefore, if we use
only the recurrences (4) and (5) for calculating the sec-
ond vector of the elliptic net block, then we can reduce
the critical path. (The cost for calculating the first vec-
tor does not affect the critical path because the elements
in the first vector are in Fp2 , in which the operation costs
are relatively low.) To do so, we extend the elliptic net
block. We add the two additional elements W (k + 2, 1)
and W (k + 3, 1) to the second vector. (See Fig. 2.)
This extension of the block allows us to computeDou-

ble or DoubleAdd without the recurrences (6) and (7).
Although this technique increases the total cost, the cost
of the critical path is reduced to the following three op-
erations; one multiplication in Fp12 , one multiplication
of the elements in Fp12 and Fp2 , and one addition in Fp12 .
Based on the above, we construct algorithms for com-

puting the elliptic net with 1, 4, 6, 8 and 10 processors.
In the 4-processor algorithm, an extended block is not
used because 4 processors is too few to overcome the
increase in the total cost.

4.2 Estimating the cost

In this subsection, we estimate the costs of our par-
allel algorithms by which we compute the elliptic net

associated to the twist curves of BN curves. We as-
sume the finite fields implemented by the tower exten-
sion Fp2 ⊆ Fp6 ⊆ Fp12 stated in [8]. In this paper, the
cost means the number of multiplications in the finite
fields, namely, we ignore the number of additions. mi

denotes the cost of multiplication in Fpi and si denotes
the cost of squaring in Fpi . Based on the method stated
in [8], we estimate the cost in terms of m2 as follows:

m12 = 18m2, s12 = 12m2, m6 = 6m2, s2 =
2

3
m2.

The cost of multiplying an element of Fpi by one of Fpj

with i|j is (j/i)mi.
For the above setting, the costs of the longest path in

the algorithms are listed in Table 1.
For 10-processor algorithm, we achieve a cost that is

equal to that of the critical path.

5. Conclusion

In this work, we constructed a method for computing
the optimal ate pairing over BN curves via the ellip-
tic net associated to the twist curves, and algorithms to
parallelize the computation of this elliptic net. Our algo-
rithm for 10 processors has the lowest cost for computing
our extended block (without parallelizing the field oper-
ations), and its cost of the field multiplication is about
22% that of a single processor.
The implementation of our algorithms in a computer

is a future work.
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