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Abstract

This paper presents a new methodology to compute first-order Greeks for barrier options under
the framework of path-dependent payoff functions with European, Lookback, or Asian type
and with time-dependent trigger levels. In particular, we develop chain rules for Wiener path
integrals between two curves that arise in the computation of first-order Greeks for barrier
options. We also illustrate the effectiveness of our method through numerical examples.
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1. Introduction and main results

Barrier options are exotic options whose payoffs de-
pend on whether the underlying asset price reached cer-
tain barrier levels (also called trigger levels) prior to ma-
turity. Since barrier options are widely used financial
products, computation of their prices and Greeks is an
important issue in mathematical finance. Previous works
have treated computation of barrier options [1–5] and
their Greeks [6] under the framework of specific payoff
functions (e.g., European- or Lookback-type functions)
with constant trigger levels. This paper proposes a new
method for the computation of the Greeks for barrier op-
tions under the general framework. Our objective is to
compute first-order Greeks for barrier options under the
framework of general path-dependent payoff functions
with time-dependent option triggers.
The organization of this paper is as follows. This sec-

tion describes chain rules (CR) for Wiener path integrals
between two curves. In Section 2, we formulate the price
of double knock-out barrier options under the Black–
Scholes market model as Wiener path integrals between
two curves, and illustrate the effectiveness of our CR
method at computing first-order Greeks through Euro-
pean down-and-out call options. Section 3 concludes.

1.1 Case with two pinned edges

We borrow some notations from [7]. For a, b ∈ R
and T > 0, let Pa,b be the (one-dimensional) pinned
Wiener measure on C ≡ C([0, T ]) such that w(0) = a
and w(T ) = b. We write w = {w(t); t ∈ [0, T ]} for w ∈ C.
Let two functions g± ∈ C be given and assume that g+

is strictly above g−, namely, they satisfy the condition

g−(t) < g+(t), t ∈ [0, T ]. (1)

We consider

C⟨g−, g+⟩ := {w ∈ C; g−(t) ≤ w(t) ≤ g+(t), t ∈ [0, T ]},
the space of all paths staying between g+ and g−. We
first discuss the chain rule for Wiener integrals with re-

spect to Pa,b, restricted on the set C⟨g−, g+⟩.
To formulate our main result, we need to introduce

several additional notions. For 0 ≤ r1 ≤ r2 ≤ T ,
let P r1,r2

a,b be the pinned Wiener measure on Cr1,r2 ≡
C([r1, r2]) such that w(r1) = a and w(r2) = b. We write
Cr1,r2
a,b = {w ∈ Cr1,r2 ;w(r1) = a,w(r2) = b} to indicate

the boundary conditions a and b.
For a function g ∈ Cr1,r2 , we consider Cr1,r2

+ ⟨g⟩ =
{w ∈ Cr1,r2 ;w(t) ≤ g(t), t ∈ [r1, r2]} and Cr1,r2

− ⟨g⟩,
similarly defined by replacing the condition w(t) ≤
g(t) with w(t) ≥ g(t). As well, Cr1,r2

+ ⟨g⟩ and Cr1,r2
− ⟨g⟩

are the spaces of all paths staying, respectively, below
or above the curve g on the interval [r1, r2]. We set
Ar1,r2

+ (g) = (−∞, g(r1)) × (−∞, g(r2)) and Ar1,r2
− (g) =

(g(r1),∞) × (g(r2),∞). These are subsets of R2 and
specify the classes of boundary conditions (a, b) for the
pinned Wiener measures.
If two functions g± ∈ Cr1,r2 satisfying (1) for

t ∈ [r1, r2] are given, then we set Cr1,r2⟨g−, g+⟩ =
Cr1,r2
+ ⟨g+⟩∩Cr1,r2

− ⟨g−⟩ and Ar1,r2(g−, g+) = Ar1,r2
+ (g+)∩

Ar1,r2
− (g−). In particular, when r1 = 0 and

r2 = T , we omit the superscripts and write
Ca,b, C⟨g−, g+⟩, A(g−, g+) for C0,T

a,b , C0,T ⟨g−, g+⟩,
A0,T (g−, g+), and so on. The conditional proba-
bilities P r1,r2

a,b;g−,g+( · ) = P r1,r2
a,b ( · | Cr1,r2⟨g−, g+⟩) and

P r1,r2
a,b;g,±( · ) = P r1,r2

a,b ( · | Cr1,r2
± ⟨g⟩) of P r1,r2

a,b on each path

space are defined for (a, b) ∈ Ar1,r2(g−, g+) for (a, b) ∈
Ar1,r2

± (g), respectively, in the usual way, and then these
definitions can be naturally extended to (a, b) at the
boundaries of these sets (see [7, Section 2]).
For 0 ≤ r1 < r2 ≤ T and g ∈ W 1,2+([r1, r2]), we set

c̄r1,r2α,β;±(g) =
2|α− β|
r2 − r1

EP
r1,r2;+

α,β [Mr1,r2(±g)]

EP
r1,r2
α,β [Mr1,r2(±g)]

(2)

for α, β ≥ 0, where W 1,2+([r1, r2]) =
∪

p>2 W
1,p([r1, r2])

with the usual Sobolev spaces W 1,p([r1, r2]) on [r1, r2],
and P r1,r2;+

α,β ≡ P r1,r2
α,β;0,− stands for the distribution of the
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three-dimensional Bessel bridge {w(t) ≥ 0; t ∈ [r1, r2]}
such that w(r1) = α and w(r2) = β for α, β ≥ 0 (see [7,
Proposition 3.1]). The random variables Mr1,r2(f) are
Cameron–Martin densities determined by

Mr1,r2(g) = exp

(∫ r2

r1

g′(t)dw(t)− 1

2

∫ r2

r1

g′(t)2dt

)
.

Note that the integrals
∫ r2
r1

g′(t)dw(t) with g′ ∈
L2+([r1, r2]) =

∪
p>2 L

p([r1, r2]) are defined as the
stochastic integrals (of Wiener type) relative to w(t).
See [7, Section 8], particularly for those under P r1,r2;+

α,β

(with α or β = 0).
We further set, for 0 < r < T and c ∈ R,

p(r, a, b; c)=
p(r, a, c)p(T − r, c, b)

p(T, a, b)
(3)

=

√
T√

2πr(T − r)

× exp

(
(a− b)2

2T
− (a− c)2

2r
− (c− b)2

2(T − r)

)
,

where p(r, a, c) = e−(a−c)2/2r/
√
2πr.

We are now able to state the first main result of
this paper under basic assumptions on the curves g±[λ] :

[0, T ] → R and the functionals F[λ] : Ca,b → R (λ ∈ Λ),
where Λ is an open subset of R. The following are the
conditions for {g±[λ]}λ∈Λ = {g−[λ], g

+
[λ]}λ∈Λ:

[g1] For λ ∈ Λ, two curves g±[λ] = {g±[λ](t)}t∈[0,T ] belong

to W 1,2+([0, T ]), and satisfy (1).

[g2] For t ∈ [0, T ], g±[·](t) := {g±[λ](t)}λ∈Λ be-

long to C1(Λ). In addition, for λ ∈ Λ,
∂g±[λ]/∂λ := {∂g±[λ](t)/∂λ}t∈[0,T ] belong to the class

W 1,2+([0, T ]).

The following are the conditions for {F[λ]}λ∈Λ:

[F1] For w ∈ Ca,b, F[·](w) := {F[λ](w)}λ∈Λ is a
function from Λ to R, and belongs to C1(Λ).
We denote the derivative of F[λ](w) with respect
to λ by ∂F[λ](w)/∂λ, and write ∂F[λ](·)/∂λ =
{∂F[λ](w)/∂λ}w∈Ca,b

.

[F2] For λ ∈ Λ, F[λ](·) and ∂F[λ](·)/∂λ are bounded con-

tinuous functionals on Ca,b ∩ C⟨g−[λ], g
+
[λ]⟩.

For 0 ≤ r1 < r2 ≤ T and g ∈ C, the expression g|[r1,r2] ∈
Cr1,r2 gives the restriction of g on interval [r1, r2].

Theorem 1 Assume that Ã := ∩λ∈ΛA(g
−
[λ], g

+
[λ]) ̸= ∅

and (a, b) ∈ Ã. Then, the Wiener path integral

Φa,b(λ) :=

∫
C⟨g−

[λ]
,g+

[λ]
⟩
F[λ](w)Pa,b(dw) (λ ∈ Λ)

is differentiable with respect to λ ∈ Λ, and we have
∂

∂λ
Φa,b(λ) = Ia,b(λ) +B+

a,b(λ)−B−
a,b(λ) (λ ∈ Λ), (4)

where

Ia,b(λ) =

∫
C⟨g−

[λ]
,g+

[λ]
⟩

∂

∂λ
F[λ](w)Pa,b(dw),

B±
a,b(λ) =

∫ T

0

∂

∂λ
g±[λ](r)ν

±
a,b(r)

Er,±
a,b [F[λ](w|[0,r], w|[r,T ])]dr,

and the expectations Er,±
a,b in the right-hand side are

found under the product of the conditional probabilities

P 0,r

a,g±
[λ]

(r);g−
[λ]

,g+
[λ]

⊗ P r,T

g±
[λ]

(r),b;g−
[λ]

,g+
[λ]

for w = (w|[0,r], w|[r,T ]), respectively, and for r ∈ (0, T )

ν±a,b(r)

:=
1

2
p(r, a, b; g±[λ](r))

× c̄0,r|a−g±
[λ]

(0)|,0;±(g
±
[λ])P

0,r

a,g±
[λ]

(r);g±
[λ]

,±(C
0,r
∓ ⟨g∓[λ]⟩)

× c̄r,T
0,|b−g±

[λ]
(T )|;±(g

±
[λ])P

r,T

g±
[λ]

(r),b;g±
[λ]

,±(C
r,T
∓ ⟨g∓[λ]⟩).

1.2 Case with one pinned edge and one free edge
We next consider the case where w(T ) can move

freely. For 0 ≤ r1 < r2 ≤ T , let P r1,r2
a be the Wiener

measure on Cr1,r2
a := {w ∈ Cr1,r2 ;w(r1) = a}. For

0 ≤ r ≤ T and g, g± ∈ Cr,T , we set Br
+(g) = (−∞, g(r)),

Br
−(g) = (g(r),∞) and Br(g−, g+) = (g−(r), g+(r)).

These subsets of R specify the classes of boundary con-
ditions a for P r1,r2

a at r = r1. When r1 = 0, r2 = T
or r = 0, we drop the superscripts and write Pa, Ca,
B(g−, g+) for P 0,T

a , C0,T
a , B0(g−, g+), and so on. In

this subsection, we discuss the chain rule for integrals
with respect to Pa restricted on the set C⟨g−, g+⟩. For
g ∈ Cr1,r2 and g± ∈ Cr1,r2 satisfying (1), the conditional
probabilities P r1,r2

a;g−,g+( ·) = P r1,r2
a ( · | Cr1,r2⟨g−, g+⟩) and

P r1,r2
a;g,±( · ) = P r1,r2

a ( · | Cr1,r2
± ⟨g⟩) of P r1,r2

a are defined for
a ∈ Br1(g−, g+) for a ∈ Br1

± (g), respectively, in the usual
way, and again these definitions can be extended to a
at the boundaries of these sets (see [7, Section 5]). For
0 ≤ r1 < r2 ≤ T and g ∈ W 1,2+([r1, r2]), we set

d̄r1,r2± (g) =

√
2

π(r2 − r1)
EP

r1,r2;+
0 [Mr1,r2(±g)], (5)

where P r1,r2;+
α := P r1,r2

α;0,− stands for the distribution of
the Brownian meander {w(t) ≥ 0; t ∈ [r1, r2]} such that
w(r1) = α ≥ 0. See Proposition 5.4 for d̄0,r− (g) and Sec-
tion 8 in [7] for the stochastic integrals.
We now state the second main result of this paper.

We assume that the curves {g±[λ]}λ∈Λ = {g−[λ], g
+
[λ]}λ∈Λ

satisfy the conditions [g1] and [g2]. The following are
the condition for the functionals {F[λ]}λ∈Λ:

[F3] For λ ∈ Λ, the conditions [F1] and [F2] are satisfied
for almost every b ∈ B(g−[λ], g

+
[λ]). It holds that

M̂a(λ) := esssupb∈B(g−
[λ]

,g+
[λ]

) M̂a,b(λ) < ∞ (λ ∈ Λ),

where

M̂a,b(λ) := sup
w∈Ca,b∩C⟨g−

[λ]
,g+

[λ]
⟩

(
|F[λ](w)| ∨

∣∣∣ ∂
∂λ

F[λ](w)
∣∣∣) .

Theorem 2 Assume that B̃ := ∩λ∈ΛB(g−[λ], g
+
[λ]) ̸= ∅

and a ∈ B̃. Then,

Φa(λ) :=

∫
C⟨g−

[λ]
,g+

[λ]
⟩
F[λ](w)Pa(dw) (λ ∈ Λ)

is differentiable with respect to λ ∈ Λ, and we have

∂

∂λ
Φa(λ) = Ia(λ) +B+

a (λ)−B−
a (λ) (λ ∈ Λ), (6)

– 14 –



JSIAM Letters Vol. 9 (2017) pp.13–16 Kensuke Ishitani

where

Ia(λ)=

∫
C⟨g−

[λ]
,g+

[λ]
⟩

∂

∂λ
F[λ](w)Pa(dw),

B±
a (λ)=

∫ T

0

∂

∂λ
g±[λ](r)ν

±
a (r)Er,±

a [F[λ](w|[0,r], w|[r,T ])]dr,

and the expectations Er,±
a in the right-hand side are

found under the product of the conditional probabilities

P 0,r

a,g±
[λ]

(r);g−
[λ]

,g+
[λ]

⊗ P r,T

g±
[λ]

(r);g−
[λ]

,g+
[λ]

for w = (w|[0,r], w|[r,T ]), respectively, and for r ∈ (0, T )

ν±a (r) :=
1

2
p(r, a, g±[λ](r))

× c̄0,r|a−g±
[λ]

(0)|,0;±(g
±
[λ])P

0,r

a,g±
[λ]

(r);g±
[λ]

,±(C
0,r
∓ ⟨g∓[λ]⟩)

× d̄r,T± (g±[λ])P
r,T

g±
[λ]

(r);g±
[λ]

,±(C
r,T
∓ ⟨g∓[λ]⟩).

1.3 Related results

Integration by parts formulas (IbPFs) for Wiener mea-
sures on a path space between two curves are established
in [7]. As well, Theorems 1 and 2 give the CRs for Wiener
path integrals between two curves. The approaches for
both proofs are based on the classical polygonal approx-
imations for the Brownian motions, which reduce the
IbPFs and the CRs to those on finite-dimensional spaces.
Note that B±

a,b(λ) and B±
a (λ) are quite similar to the

boundary term of IbPFs in [7].

2. Application of CRs to compute first-

order Greeks for barrier options

We formulate the price of double knock-out barrier op-
tions under the Black–Scholes market model as Wiener
path integrals between two curves. The security price
process S = {St}0≤t≤T is assumed to follow a stochastic
differential equation of the form

dSt = µStdt+ σStdw(t),

where T, S0, σ > 0, µ ∈ R, and where w = {w(t)}t∈[0,T ]

is the standard one-dimensional Brownian motion de-
fined on the probability space (C0,T ,B(C0,T ), P ). Let us
note that the value of a knock-out barrier option can be
expressed as the following form:

Φ̂ := E[e−cT f(S)1C⟨eG− ,eG+ ⟩(S)].

Here, T is a maturity of the option, f : C0,T → R is
an option payoff function, and c ≥ 0 stands for the
risk-free interest rate. Moreover, G± = {G±(t)}t∈[0,T ] ∈
W 1,2+([0, T ]) satisfying (1) stand for trigger curves for
the logarithmic process X = {Xt := logSt}0≤t≤T . We
define g± = {g±(t)}t∈[0,T ] and F (·) = {F (w)}w∈C0 by

g±(t) :=
1

σ

[
G±(t)− logS0 −

(
µ− σ2

2

)
t

]
,

F (w) := e−cT f({e(µ−σ2/2)t+σw(t)}0≤t≤T ).

Note that g± are the triggers for w = {w(t)}t∈[0,T ].
Thus, it holds that 1C⟨G−,G+⟩(X) = 1C⟨g−,g+⟩(w) and

Φ̂ =

∫
C⟨g−,g+⟩

F (w)P0(dw).

Note that ∂Φ̂/∂σ and ∂Φ̂/∂S0 are Vega and Delta, re-
spectively, for this barrier option. Since ∂g±(t)/∂σ =[
−G±(t) + logS0 +

(
µ+ σ2/2

)
t
]
/σ2, ∂g±(t)/∂S0 =

−1/(σS0) hold for t ∈ [0, T ], both [g1] and [g2] are sat-
isfied for g± with λ = σ or λ = S0.

2.1 European down-and-out call option

This subsection demonstrates the effectiveness of our
CR to compute first-order Greeks by using European
down-and-out call options whose Greeks can also be cal-
culated directly. The characteristic of this type of option
is that if the security price S = {St}0≤t≤T ever reaches

the lower trigger level eG
−(t) ≡ L ∈ (0, S0), then the

right of the European call option is extinguished. The
price of this option is given as the following expectation:

CBS
Barrier(S0) :=

∫
C0,T
− ⟨g−⟩

F (w)P0(dw),

where the payoff function F (w) is given as

F (w) = e−cT
(
S0e

(µ−σ2/2)T+σw(T ) −K
)+

, w ∈ C0,
with a strike price K (≥ L). Using the joint distribu-
tion of w(T ) and mint∈[0,T ] w(t), the price of a European
down-and-out call option can be calculated as follows:

CBS
Barrier(S0) = CBS(S0)−

(S0

L

)1− 2µ

σ2

CBS
(L2

S0

)
, (7)

where CBS(S0) := E
[
e−cT (ST −K)+

]
is the price of a

European call option (vanilla option). Note also that the
price of a European call option can be calculated as

CBS(S0)=e−cT
[
eµTS0N (d1(T,X0))−KN (d2(T,X0))

]
,

where N (x) :=
∫ x

−∞ n(z)dz, n(z) := e−z2/2/
√
2π,

d1(t, x) :=
1

σ
√
t

[
x− logK +

(
µ+

σ2

2

)
t

]
,

d2(t, x) := d1(t, x)− σ
√
t (t > 0, x ∈ R).

Using (7), Vega and Delta of the European down-and-
out call option can be calculated directly as follows:

Vega(Direct)

=
∂

∂σ
CBS

Barrier(S0)

=
e−cT

σ

(
Kd1n (d2)− eµTS0d2n (d1)

)
+

(
S0

L

)1−2µ/σ2

e(µ−c)T

σ

(
L2

S0

)
d̃2n(d̃1)

−
(
S0

L

)1−2µ/σ2

e−cT

σ
Kd̃1n(d̃2)

+ 4
( µ

σ3

)(
S0

L

)1−2µ/σ2

log

(
S0

L

)
e−cT

×
[
KN (d̃2)− eµT

(
L2

S0

)
N (d̃1)

]
, (8)

Delta(Direct)

=
∂

∂S0
CBS

Barrier(S0)

= e(µ−c)TN (d1) + e(µ−c)T n(d1)

σ
√
T

− e−cTK
n(d2)

S0σ
√
T
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Table 1. The results of Vega for µ = ±0.1,±0.3.

Vega

µ Direct CR I0(σ) B−
0 (σ)

−0.3 2.02572 2.02592 2.03173 0.00580274

−0.1 11.8716 11.8716 14.2908 2.41917
0.1 7.2316 7.2316 29.7194 22.4877
0.3 −44.3372 −44.3372 22.4359 66.7731

Table 2. The results of Delta for µ = ±0.1,±0.3.

Delta

µ Direct CR I0(S0) B−
0 (S0)

−0.3 0.016236 0.0162332 0.00952157 −0.0067116
−0.1 0.205788 0.205789 0.108803 −0.096986

0.1 0.966049 0.966049 0.457254 −0.508795
0.3 2.10324 2.10324 0.932094 −1.17115

−
(
S0

L

)1−2µ/σ2
(
1− 2 µ

σ2

)
CBS

(
L2

S0

)
S0

+

(
S0

L

)1−2µ/σ2

e(µ−c)T (L
2

S0
)n(d̃1)−e−cTKn(d̃2)

S0σ
√
T

+

(
S0

L

)1−2µ/σ2

e(µ−c)T

(
L

S0

)2

N (d̃1) (9)

where {di, d̃i}i=1,2 are given as di := di(T, logS0), d̃i :=
di

(
T, log

(
L2/S0

))
(i = 1, 2).

In contrast, the CR formula (6) in Theorem 2 presents
a new method to compute the Greeks of barrier options
with time-dependent trigger levels and path-dependent
payoff functions. Thus, it is also meaningful to apply (6)
to compute Vega and Delta for a European down-and-
out call option, which is explained below. The derivatives
of the payoff function are given as
∂F

∂σ
(w) = e−cT (−σT + w(T ))S0e

(µ−σ2

2 )T+σw(T ), (10)

∂F

∂S0
(w) = e−cT e(µ−

σ2

2 )T+σw(T ), (11)

for w ∈ C0 satisfying w(T ) > −
√
Td2(T,X0), and

∂F (w)/∂σ = ∂F (w)/∂S0 = 0 for w ∈ C0 satisfy-
ing w(T ) < −

√
Td2(T,X0). Thus, [F3] is satisfied for

λ = σ and λ = S0. Since g+(t) ≡ ∞, it holds that
B+

0 (σ) = B+
0 (S0) = 0. Therefore, using (6), we have

Vega(CR) := I0(σ)−B−
0 (σ) (σ > 0), (12)

Delta(CR) := I0(S0)−B−
0 (S0) (S0 > 0). (13)

Using (10), (11), and the joint distribution of w(T ) and
mint∈[0,T ] w(t), we can compute I0(σ) and I0(S0) as

I0(σ) = e(µ−c)TS0

√
Tn (d1)

+
( L

S0

)1+ 2µ

σ2

e(µ−c)TS0

×
[ log (S0

L

)2
σ

N (d̃1)−
√
Tn(d̃1)

]
, (14)

I0(S0) = e(µ−c)T
[
N (d1)−

( L

S0

)1+ 2µ

σ2

N (d̃1)
]
. (15)

Additionally, the definition of B−
0 (λ) implies

B−
0 (σ) =

∫ T

0

∂g−

∂σ
(r)ν−0 (r)Er,−

0 [F (w|[0,r], w|[r,T ])]dr,

B−
0 (S0) =

∫ T

0

∂g−

∂S0
(r)ν−0 (r)Er,−

0 [F (w|[0,r], w|[r,T ])]dr.

Moreover, we can obtain the following equation by us-
ing the definition of ν−0 (r) and the distribution of the
Brownian meander w|[r,T ] = {w|[r,T ](t)}t∈[r,T ]:

ν−0 (r)Er,−
0 [F (w|[0,r], w|[r,T ])]

= log
(S0

L

)2e−cT

σr
√
r

× exp
(
− (T − r)

κ2
−
2

)
n
( log(S0/L)

σ
√
r

+ κ−
√
r
)

×
[
Lκ+ exp

( (T − r)κ2
+

2

)
N (d1(T − r, logL))

−Kκ− exp
( (T − r)κ2

−
2

)
N (d2(T−r, logL))

]
,

where κ± := µ/σ ± σ/2. Note that [5] obtained an ap-
proximation formula for the down-and-out barrier Eu-
ropean call option under the stochastic volatility model,
and their first-order coefficient function is similar to (12).
In the following, we set c = 0, T = 0.75, S0 = 100,

K = 105, L = 95, and σ = 0.15. We examine four
patterns for µ = ±0.1,±0.3, and partition [0, T ] into
100, 000 equal intervals to apply the trapezoidal rule to
compute the integrals of B−

0 (σ) and B−
0 (S0). Table 1

and Table 2 show the results of Vega in (8) and (12),
and Delta in (9) and (13), respectively. We can confirm
that our CR method can accurately calculate Delta and
Vega for the down-and-out barrier European call option.

3. Conclusion and discussions

We introduced our newly developed CR method to
compute first-order Greeks for barrier options under
the framework of path-dependent payoff functions with
time-dependent trigger levels. We also demonstrated
that our method can accurately compute first-order
Greeks, applying it to European down-and-out call op-
tions under the Black–Scholes market model. We are
currently investigating the CR formulas for computing
higher-order Greeks of barrier options under the general
market model. We hope to report more extensive and
challenging results in a future article.

References

[1] R. C.Merton, Theory of rational option pricing, Bell J. Econ.,
4 (1973), 141–183.

[2] N. Kunitomo and M. Ikeda, Pricing options with curved
boundaries, Math. Finan., 2 (1992), 275–298.

[3] Y. Muroi, Pricing lookback options with knock-out bound-
aries, Appl. Math. Finan., 13 (2006), 155–190.

[4] S.Kusuoka, M.Ninomiya and S.Ninomiya, Application of the
Kusuoka approximation to barrier options, CARF Working

Paper, CARF-F-277, The University of Tokyo, (2012), 1–8.
[5] T. Kato, A. Takahashi and T. Yamada, A semigroup expan-

sion for pricing barrier options, Int. J. Stoch. Anal., 8 (2014),
1–15.

[6] E. Gobet and A. Kohatsu-Higa, Computation of greeks for
barrier and lookback options using Malliavin calculus, Elec-
tron. Commun. Probab., 8 (2003), 51–62.

[7] T. Funaki and K. Ishitani, Integration by parts formulae
for Wiener measures on a path space between two curves,
Probab. Theory Relat. Fields., 137 (2007), 289–321.

– 16 –


