
JSIAM Letters Vol.9 (2017) pp.29–32 c⃝2017 Japan Society for Industrial and Applied Mathematics J S I A MLetters

Constructing an efficient hash function from 3-isogenies

Hikari Tachibana1, Katsuyuki Takashima2 and Tsuyoshi Takagi3

1 Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
2 Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna, Ka-
makura, Kanagawa, Japan

3 Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka,
Japan

E-mail ma215025 math.kyushu-u.ac.jp, Takashima.Katsuyuki aj.MitsubishiElectric.co.jp

Received October 25, 2016, Accepted January 23, 2017

Abstract

Charles et al. proposed hash functions based on the difficulty of computing isogenies be-
tween supersingular elliptic curves. Yoshida and Takashima then improved the 2-isogeny hash
function computation by using some specific properties of 2-torsion points. In this paper, we
extend the technique to 3-isogenies and give the efficient 3-isogeny hash computation based on
a simple representation of the (backtracking) 3-torsion point. Moreover, we implement the 2-
and 3-isogeny hash functions using Magma and show our 3-isogeny proposal has a comparable
efficiency with the 2-isogeny one.

Keywords elliptic curve, isogeny, post-quantum cryptography

Research Activity Group Algorithmic Number Theory and Its Applications

1. Introduction

A hash function maps an arbitrary length bit string
to a fixed length bit string and the hash value should
be efficiently computed. A cryptographic hash function
have to be computationally difficult to find two distinct
inputs that have the same outputs and to find an input
that has given output. These properties are called colli-
sion resistance and preimage resistance, respectively.
Charles et al. constructed cryptographic hash func-

tions from Pizer’s Ramanujan graphs whose vertex set
is F̄p-isomorphism classes of supersingular elliptic curves
over Fp2 and edge set is ℓ-isogenies between two super-
singular elliptic curves [1]. In particular, they showed
an explicit algorithm for the ℓ = 2 case. Yoshida and
Takashima proposed more efficient computations of 2-
isogeny sequences by using the relations of the roots and
the coefficients of a quadratic equation [2]. Their algo-
rithms consist of one multiplication and one square root
calculation over Fp2 . Although the Charles et al. algo-
rithm can be extended for the ℓ = 3 case, an explicit
description of the algorithm is not yet given and there
exist several unclear points for explicit estimations of the
computation time.
Therefore, in this paper, we give an explicit descrip-

tion this hash function with 3-isogenies by expressing
an input as ternary expansion and assigning {0, 1, 2} to
three edges of each vertex that are not backtracking.
When we compute a 3-isogeny, we use Vélu’s formula
like the ℓ = 2 case and we show that a proposition in
the ℓ = 2 case can be extended to ℓ = 3 for computation
of backtracking points.
In the algorithm, we solve the cubic polynomial equa-

tion that is the factor of the 3rd division polynomial by
Cardano’s formula and give the efficient algorithm that

computes the 3-isogeny by fifteen multiplications, one
square root calculation and one cube root calculation.
The roots of the 3rd division polynomial are equal to
x-coordinates of 3-torsion points on the elliptic curve.
Moreover, we implemented the 2- and 3-isogeny hash
functions using Magma [3] when their security levels are
128-bit security (against classical computers) and show
these functions can be computed in almost the same
time.

2. Elliptic curves and Vélu’s formulas

2.1 Elliptic curves

Let p be a prime greater than 3. Let Fp be a finite field
with p elements and F̄p its algebraic closure. An elliptic
curve E over F̄p is given by the Weierstrass normal form
y2 = x3 + Ax + B, where A and B ∈ F̄p such that
4A3 + 27B2 ̸= 0.
The j-invariant of E is defined by j(E) = j(A,B) =

1728× [4A3/(4A3+27B2)]. Conversely, an elliptic curve
E that has j-invariant j ∈ F̄p (j ̸= 0, 1728) can be ob-
tained by setting its coefficients A(j) := 3j/(1728 − j)
and B(j) := 2j/(1728− j). Two elliptic curves have the
same j-invariant if and only if they are isomorphic over
F̄p.
The set of F̄p rational points on E is E(F̄p) = {(x, y) ∈

F̄2
p|y2 = x3 + Ax + B} ∪ {OE}, where OE denotes the

point at infinity on E. For each integer n, let [n] be
the multiplication-by-n map on E. Let E[n] = {P ∈
E(F̄p)|[n]P = OE} be the set of n-torsion points. If p ̸ |n,
E[n] ∼= Z/nZ× Z/nZ.
For two elliptic curves E1, E2 over F̄p, a homomor-

phism ϕ : E1 → E2 is a rational map that sends OE1

to OE2 . A non-zero homomorphism is called an isogeny,
and a separable isogeny with the cardinality ℓ of the ker-

– 29 –

JSIAM Letters Vol. 9 (2017) pp.29–32 Hikari Tachibana et al.

nel is called an ℓ-isogeny. For any ℓ-isogeny ϕ : E1 → E2,
there exists an unique ℓ-isogeny ϕ̂ : E2 → E1 such that
ϕ̂ ◦ ϕ = [ℓ]. It is called the dual isogeny of ϕ.
If an elliptic curve E over F̄p satisfies E[p] = {OE},

then we say that E is supersingular. The j-invariants
of supersingular elliptic curves are always in Fp2 [4,
Th.V.3.1]. The number of j-invariants of supersingular
elliptic curves over F̄p is ⌊p/12⌋ + ϵ, where ϵ ∈ {0, 1, 2}
depending on the congruence class of p modulo 12 [4,
Th.V.4.1(c)].

2.2 Vélu’s formulas

We use Vélu’s formulas [5] to compute 3-isogenies.
When an elliptic curve E and a subgroup C of E are
given, Vélu’s formulas give the explicit formulas of the
isogeny ϕ : E → E′ with kerϕ = C and the equation of
E′. It is for any degree ℓ. In this paper, we use the for-
mulas when ℓ = 3. Let C be a subgroup of order 3 of E,
then there exists a 3-isogeny ϕ : E → E′ with kerϕ = C.
Denote E′ by E/C. In this paper, if C = ⟨(αx, αy)⟩, then
we say the 3-isogeny ϕ is constructed by (αx, αy), where
(αx, αy) is a 3-torsion point.
When ℓ = 3, let (αx, αy) be a 3-torsion point on E

and C = ⟨(αx, αy)⟩, then an elliptic curve E/C is given
by the equation

Y 2 = X3− (9A+30α2
x)X− (70α3

x+42Aαx+27B). (1)

The isogeny ϕ : E ∋ (x, y) 7→ (X,Y) ∈ E/C is also given
by the following:

X = x+
2(3α2

x +A)

x− αx
+

4α2
y

(x− αx)2
, (2)

Y = y −
8α2

yy

(x− αx)3
− 2(3α2

x +A)y

(x− αx)2
,

ϕ(OE) = OE/C and ϕ((αx, αy)) = OE/C .
If E is supersingular, E/C is also supersingular.
The x-coordinates of 3-torsion points on E are equal

to the solutions of the 3rd division polynomial for E

ψ3(x) = 3x4 + 6Ax2 + 12Bx−A2. (3)

3. Pizer’s graphs and hash functions

3.1 Expander graphs and Pizer’s graphs

Let G = (V, E) be a graph with vertex set V and edge
set E . A graph G is called an expander graph with ex-
pansion constant c > 0 if, for any subgroups U ⊂ V
such that ♯U ≥ ♯V/2, the boundary Γ(U) of U satisfies
♯Γ(U) ≥ c · ♯U where Γ(U) = {v ∈ V|∃u ∈ U , {u, v} ∈
E} − U . Any expander graph is connected. A random
walk on an expander graph has the rapidly mixing prop-
erty. After O(log ♯V) steps, the end point of the random
walk approximates the uniform distribution on V.
Let p and ℓ be two distinct primes. Pizer’s graph

G(p, ℓ) has F̄p-isomorphism classes of supersingular el-
liptic curves over Fp2 as its vertex set V. We represent
each vertex by its j-invariant. Let the edge set E be ℓ-
isogenies between two isomorphism classes. The Pizer
graph is (ℓ+ 1)-regular graph and has the rapidly mix-
ing property. In particular, this graph is one of the Ra-
manujan graphs, a special type of an expander graph.
For details, see [1] or [6].

3.2 Hash functions using Pizer graphs

Charles et al. constructed hash functions using ran-
dom walks on Pizer graphs. The integer input of the
hash functions is used to determine the direction of the
random walk, and the end point of the random walk is
the output of the hash functions.
Let E0 be a starting point and n the length of the

walk. Then the walk is represented by the sequence of
the elliptic curves E0 → E1 → · · · → En. A vertex Ei

is connected to Ei+1 by an ℓ-isogeny ϕi, which can be
computed by Vélu’s formula. Therefore the hash value
of the hash function is given by computing the isogeny
ϕi : Ei → Ei+1 repeatedly, where i ∈ {0, 1, . . . , n− 1}.
Each edge ϕi from Ei to Ei+1 is chosen as follows. Let

ω be the input of the hash function. The input ω is con-
verted into base-ℓ number b0b1 · · · bn−1 ∈ {0, 1, . . . , ℓ −
1}n. A vertex Ei has ℓ + 1 edges, and one of them is
connected to Ei−1 and called a backtracking. We assign
{0, 1, . . . , ℓ− 1} to the other ℓ edges, then the edge ϕi is
the one assigned bi or the (i + 1)-th digit of the input.
The length of the random walk is ⌈logℓ ω⌉. This means
the ℓ-isogeny computation is repeated ⌈logℓ ω⌉ times.

3.3 Security of the Pizer graph hash functions

Hash functions from expander graphs have been con-
structed by Cayley graphs and Pizer graphs. The Zémor
hash function and the LPS hash function are Cayley
graph hash functions. The polynomial-time attacks on
these Cayley graph hash functions have already known
[7, 8]. However, no polynomial-time attacks on Pizer
graph hash function have been found for now.
The security of the Pizer graph hash function is based

on the difficulties of the following problems defined by
Charles et al [1, Sec.5].

Problem 1 Find a pair of supersingular elliptic curves
E1, E2 over Fp2 and two distinct isogenies f1 : E1 → E2,
f2 : E1 → E2 of degree ℓn.

Problem 2 Given a supersingular elliptic curve E
over Fp2 , find an endomorphism f : E → E (f ̸= [ℓn])
of degree ℓ2n.

Problem 3 Given two supersingular elliptic curves
E1, E2 over Fp2 , find an isogeny f : E1 → E2 of de-
gree ℓn.

Problem 3 is called the isogeny problem and the
preimage resistance of this hash function is based on
hardness of this problem. The isogeny problems are clas-
sified according to whether the elliptic curves are ordi-
nary or supersingular.
The complexity of the best known attacks on this

problem are following. In the case of ordinary ellip-
tic curves, Galbraith and Stolbunov gave a classical
exponential Õ(4

√
p) algorithm in 2013 [9] and Childs,

Jao and Soukharev proposed a quantum subexponential
Lp[1/2,

√
3/2] algorithm in the same year [10], where

Lp[a, c] = exp((c + o(1))(log p)a(log log p)1−a). In the
case of supersingular elliptic curves, Delfs and Galbraith
proposed a classical exponential Õ(

√
p) algorithm in

2013 [11] and Biasse, Jao and Sankar gave quantum ex-
ponential Õ(4

√
p) algorithm in 2014 [12] based on [11].

– 30 –

JSIAM Letters Vol. 9 (2017) pp.29–32 Hikari Tachibana et al.

4. Proposed method: A hash function us-

ing 3-isogenies

We propose an efficient hash function using 3-isogenies
by extending [2, Prop.1] to the case of 3-torsion points.
3-isogeny hash function repeats 3-isogeny computation
for ⌈m/ log2 3⌉ times, where m is the bit length of the
input of the hash function.

4.1 Notation and selector functions

For each integer i ≥ 0, we fix the notation about 3-
torsion points on Ei. We denote a point that constructs
an isogeny ϕi : Ei → Ei+1 by (αx

i , α
y
i), i.e.

ϕi : Ei → Ei+1 = Ei/⟨(αx
i , α

y
i)⟩.

We call a torsion point that constructs a dual isogeny of
ϕi−1 a backtracking point and denote it by (βx

i , β
y
i).

We define selector functions to determine the isogeny.
Each vertex in 3-isogeny graph has four edges, so we
assign {0, 1, 2} to three edges from the vertex that is not
the backtracking. We fix a generator τ such that Fp2 =
Fp[τ] = Fpτ + Fp

∼= (Fp)
2 to use a natural lexicographic

order in (Fp)
2 and define the following selector function

for λ0, λ1, λ2 ∈ Fp2 and b ∈ {0, 1, 2}:

select(λ0, λ1, λ2, b) =

min(λ0, λ1, λ2) if b = 0

mid(λ0, λ1, λ2) if b = 1

max(λ0, λ1, λ2) if b = 2

At the starting vertex E0, we can choose any edges
from E0 as the next edge. So we will use the follow-
ing selector function select0 to determine αx

0 . Let λ0,
λ1, λ2, λ3 ∈ Fp2 be four roots of the 3rd division poly-
nomial ψ3(x) = 3x4 + 6A0x

2 + 12B0x − A2
0 for E0 in

ascending order. Given A0, B0 ∈ Fp2 and b ∈ {0, 1, 2},
select0(A0, B0, b) returns λb as αx

0 .

4.2 3-torsion points’ properties

For generators P and Q of 3-torsion points on E, i.e.,
E[3] = ⟨P,Q⟩, four edges around E in the Pizer graph
are represented by four cyclic groups ⟨P ⟩, ⟨Q⟩, ⟨P + Q⟩
and ⟨P −Q⟩, which are given as kernels of isogenies.

Lemma 4 Let P and Q be generators of 3-torsion
points on E and ϕ : E → E′ = E/⟨P ⟩ a 3-isogeny.
Then, ϕ(Q), ϕ(P +Q) and ϕ(P −Q) construct dual iso-
genies of ϕ, i.e. define the backtracking of ϕ.

Proof Since ϕ(P) = OE′ and ϕ(P + Q) = ϕ(P) +
ϕ(Q) = ϕ(Q) and ϕ(P −Q) = −ϕ(Q), it suffices to show
ϕ(Q)(̸= OE′) is the backtracking point of ϕ. Then, let
ϕ′ be a 3-isogeny from E′ to E′′ := E′/⟨ϕ(Q)⟩. Hence,
since we have

E′′ = E′/⟨ϕ(Q)⟩ = (E/⟨P ⟩)/⟨ϕ(Q)⟩

= E/⟨P,Q⟩ = E/E[3] ≃ E,

the map ϕ′ ◦ ϕ : E → E′′ ≃ E is equal to the
multiplication-by-3 map on E up to isomorphisms.
Therefore the isogeny ϕ′ is the dual isogeny of ϕ, i.e.
the point ϕ(Q) defines the backtracking of ϕ.

(QED)

Proposition 5 The x-coordinate βx
i+1 of the backtrack-

ing point on Ei+1 is given by

βx
i+1 = −3αx

i .

Proof From Lemma 4, (βx
i+1, β

y
i+1) = ϕi(β

x
i , β

y
i) where

ϕi : Ei → Ei+1 is a 3-isogeny constructed by (αx
i , α

y
i).

For simplicity, let αi := αx
i , βi := βx

i and βi+1 := βx
i+1.

From Vélu’s formula (2),

βi+1

= βi +
2(3α2

i +Ai)

βi − αi
+

4(α3
i +Aiαi +Bi)

(βi − αi)2

=
−2α3

i+7βiα
2
i −2β2

i αi+β
3
i +(2Aiαi+2Aiβi+4Bi)

(βi − αi)2
.

(4)

Since αi and βi are the x-coordinates of 3-torsion points
on Ei, the 3rd division polynomial ψ3(x) given by (3)
for Ei vanishes at αi and βi. Then, (x−αi)(x− βi) can
divide ψ3(x), and by substituting αi for x into degree
three polynomial ψ3(x)/(x− βi), we have a relation

α3
i + βiα

2
i + (2Ai + β2

i)αi + (β3
i + 2Aiβi + 4Bi) = 0,

which is equivalent to

2Aiαi + 2Aiβi + 4Bi = −α3
i − βiα

2
i − β2

i αi − β3
i .

Therefore, by using this expression we can eliminate
both Ai and Bi from (4), i.e.,

βi+1 =
−3α3

i + 6βiα
2
i − 3β2

i αi

(βi − αi)2
= −3αi.

(QED)

4.3 Computation of 3-isogeny sequence

In this subsection, we explain an algorithm to compute
a 3-isogeny sequence, which executes 3-isogeny compu-
tations repeatedly (Algorithm 1). Each 3-isogeny com-
putation consists of the following four steps. By Propo-
sition 5, we can omit extra operations in steps 2 and
3 compared to the straightforward computation (Algo-
rithm 2). Let βi+1 := βx

i+1 and αi := αx
i for simplicity

below.

1. Compute the curve Ei+1, i.e. (Ai+1, Bi+1) by Vélu’s
formula (1). Note that we keep intermediate values
ξ1 := α2

i , ξ2 := α3
i and ξ3 := Aiαi for step 3.

2. Compute the x-coordinate βi+1 of the backtracking
point on Ei+1.

3. Solve the cubic equation f(x) = 0 that is the fac-
tor of the 3rd division polynomial ψ3(x) = (x −
βi+1)f(x) = (x + 3αi)f(x) for Ei+1 by Cardano’s
formula.

4. Choose αx
i+1 from the above solutions using the

function select and return Ai+1, Bi+1 and αx
i+1.

In step 2, from Proposition 5, we have βi+1 = −3αi.
This gains three multiplications and one inversion effi-
ciency from Vélu’s formula (2).
In step 3, the factor is f(x) = x3 − 3αix

2 + (2Ai+1 +
9α2

i)x + 4Bi+1 − 6Ai+1αi − 27α3
i . Let ω0 be a solution

of x2 + x+ 1 = 0. By Cardano’s formula, we have three

– 31 –

JSIAM Letters Vol. 9 (2017) pp.29–32 Hikari Tachibana et al.

Algorithm 1 3-isogeny sequence computation

Input: j0 = j(E0), walkdata ω = b0b1 . . . bn−1 ∈ {0, 1, 2}n

Output: jn = j(En)

1: (A0, B0)← (A(j0), B(j0)), α
x
0 ← select0(A0, B0, b0)

2: for i = 0 to n− 2 do
3: (Ai+1, Bi+1, α

x
i+1)← Isog3(Ai, Bi, α

x
i , bi+1)

4: end for
5: ξ1 ← (αx

n−1)
2, ξ2 ← αx

n−1ξ1, ξ3 ← An−1α
x
n−1,

An ← −(9An−1 + 30ξ1),
Bn ← −(70ξ2 + 42ξ3 + 27Bn−1), jn ← j(An, Bn)

6: return jn

Algorithm 2 Isog3 : 3-isogeny computation

Input: Ai, Bi, α
x
i , bi+1 ∈ {0, 1, 2}

Output: Ai+1, Bi+1, α
x
i+1

1: ξ1 ← (αx
i)

2, ξ2 ← αx
i ξ1, ξ3 ← Aiα

x
i ,

Ai+1 ← −(9Ai + 30ξ1),
Bi+1 ← −(70ξ2 + 42ξ3 + 27Bi) /* Vélu’s formula */

2: /* Solve the cubic equation */

t← −6(3ξ1 +Ai), s← −6(15ξ2 + 11ξ3 + 9Bi),
ζ ←

√
s2 + t3, u← 3

√
−s+ ζ, v ← −t/u,

λ0 ← αx
i + u+ v, λ1 ← αx

i + ω0u+ ω2
0v,

λ2 ← αx
i + ω2

0u+ ω0v /* ω0, ω2
0 are precomputed. */

3: αx
i+1 ← select(λ0, λ1, λ2, bi+1)

4: return Ai+1, Bi+1, α
x
i+1

solutions λk (k ∈ {0, 1, 2}) of f(x) = 0 as

λk = αi + ωk
0

3

√
−s+

√
s2 + t3 + ω3−k

0

3

√
−s−

√
s2 + t3,

where t = (2Ai+1 + 6α2
i)/3 and s = 2Bi+1 − 2Ai+1αi −

10α3
i . Applying Vélu’s formula (1) gives t = −6(3α2

i +
Ai) = −6(3ξ1 + Ai) and s = −6(15α3

i + 11Aiαi +
9Bi) = −6(15ξ2 + 11ξ3 + 9Bi). Here, ξ1, ξ2, ξ3 are al-
ready computed in step 1, and then this omits three ex-

tra multiplications. Note that since
3
√
−s+

√
s2 + t3 ·

3
√
−s−

√
s2 + t3 = −t, the cube root computation is

needed only once. Algorithm 2 is a 3-isogeny version of
[2, Algorithm 4], which is used for 2-isogeny sequences.

4.4 Implementation results

We implemented Yoshida-Takashima’s algorithm (Al-
gorithm YT) [2, Alg.5] and Algorithm 1 on Magma. For
three primes p = 2255+r (r ∈ {141, 95, 821}) and 256-bit
random inputs of these hash functions, we measured the
average timing of their calculations, respectively. Our
implementation was done on an Intel Core i7 proces-
sor with 8.00 GB RAM running at 2.30 GHz. We used
Magma V2.19-9. All the results are shown in Table 1.
In our Magma implementation, we examine the pro-

portion of the timing of square and cube root calcula-
tions in the whole computation of 2- and 3-isogeny se-
quences, respectively. We used the SquareRoot and Root

Magma commands to calculate a square root and a cube
root, respectively. We compare the costs of computing 2-
and 3-isogeny sequences for the same input length, that
is, the numbers of iterations of 2- and 3-isogeny compu-
tations in Algorithm YT and Algorithm 1, m ≈ log2 ω
and n ≈ log3 ω respectively, where input ω is given as

Table 1. The running time in second of Algorithm YT and Algo-
rithm 1 with the iteration number m := 256 (resp., n := 161) of
Algorithm YT (resp., Algorithm 1) and the proportion of square
and cube root computations in the total computations [%].

prime p Algorithm YT Algorithm 1

2255 + 141 0.872 s (98.4%) 0.732 s (97.3%)

2255 + 95 1.34 s (99.0%) 1.16 s (98.0%)

2255 + 821 1.16 s (98.9%) 1.46 s (98.4%)

an integer. We set m := 256, n := 161 in Table 1 for
256-bit input ω. We see that the 3-isogeny hash function
can be computed faster than or as fast as the 2-isogeny
hash function when the input lengths of the hash func-
tions are appropriately set. For example, for the prime
p = 2255 + 141, the cost of 3-isogeny sequence computa-
tion is 0.84 times of that of 2-isogeny.

5. Conclusion

In this paper, we proposed an efficient hash function
using 3-isogenies. The proposed 3-isogeny hash can be
computed a little faster than the 2-isogeny one or has a
comparable efficiency with it. Nowadays post-quantum
cryptosystems are actively studied, and then we expect
that the result in this paper motivates further investiga-
tions for a thorough comparison of the two hash func-
tions.

Acknowledgments

This work was supported by CREST, JST.

References

[1] D. X. Charles, E. Z. Goren and K. E. Lauter, Cryptographic

hash functions from expander graphs, J. Cryptology, 22
(2009), 93–111.

[2] R. Yoshida and K. Takashima, Computing a sequence of 2-
isogenies on supersingular elliptic curves, IEICE Trans. Fun-

damentals, E96-A (2013), 158–165.
[3] W. Bosma, J. J. Cannon, C. Fieker and A. Steel, Handbook

of Magma functions, Edition 2.19, 2013.
[4] J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed.,

Springer-Verlag, New York, 2009.
[5] J. Vélu, Isogenies entre courbes elliptiques, C. R. Acad. Sci.

Paris, Series A, 273 (1971), 238–241.
[6] A. K. Pizer, Ramanujan graphs and Hecke operators, B. Am.

Math. Soc., 23 (1990), 127–137.
[7] J.P.Tillich and G.Zémor, Group-theoretic hash functions, in:

Proc. of Algebraic Coding 1993, G. Cohen et al. eds., LNCS,
Vol. 781, pp.90–110, Springer-Verlag, Berlin, 1994.

[8] J. P. Tillich and G. Zémor, Collisions for the LPS expander
graph hash function, in: Proc. of EUROCRYPT 2008, N. P.
Smart eds., LNCS, Vol. 4965, pp.254–269, Springer-Verlag,

Berlin, 2008.
[9] S. D. Galbraith and A. Stolbunov, Improved algorithm for the

isogeny problem for ordinary elliptic curves, Appl. Algebra
Eng. Comm., 24 (2013), 107–131.

[10] A. Childs, D. Jao and V. Soukharev, Constructing elliptic
curve isogenies in quantum subexponential time, J. Math.
Crypt., 8 (2013), 1–29.

[11] C. Delfs and S. D. Galbraith, Computing isogenies between

supersingular elliptic curves over Fp, Design.Code.Cryptogr.,
78 (2016), 425–440.

[12] J. F. Biasse, D. Jao and A. Sankar, A quantum algorithm for
computing isogenies between supersingular elliptic curves, in:

Proc. of INDOCRYPT 2014, W. Meier et al. eds., LNCS, Vol.
8885, pp.428–442, Springer-Verlag, Berlin, 2014.

– 32 –

