
JSIAM Letters Vol.9 (2017) pp.65–68 c⃝2017 Japan Society for Industrial and Applied Mathematics J S I A MLetters

Application of mixed integer quadratic program to

shortest vector problems

Keiji Kimura1, Hayato Waki2 and Masaya Yasuda2

1 Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-
0395, Japan

2 Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku Fukuoka
819-0395, Japan

E-mail k-kimura math.kyushu-u.ac.jp

Received March 29, 2017, Accepted June 8, 2017

Abstract

The security of lattice-based cryptography is mainly based on the fact that the shortest
vector problem (SVP) is NP-hard. Our interest is to know how large-scale shortest vector
problems can be solved by the state-of-the-art software for mixed-integer programs. For this,
we provide a formulation for SVP via mixed integer quadratic program and show the numerical
performance for TU Darmstadt’s benchmark instances with the dimension up to 49.

Keywords shortest vector problem, mixed integer quadratic program, presolve

Research Activity Group Algorithmic Number Theory and Its Applications

1. Introduction

For n ∈ N, let b1, . . . , bn be n linearly independent
vectors over R. The set of all integral combinations of
the bi is called a lattice of dimension n, denoted by

L(B) =
{
Bx : x = (x1, . . . , xn)

T ∈ Zn
}
,

where let B = (b1, . . . , bn) denote the n × n matrix.
B is called a basis of the lattice. The shortest vec-
tor problem (SVP) is to find a nonzero shortest vector
0 ̸= Bx ∈ L(B). The hardness of the SVP assures the
security of lattice-based cryptography. Every lattice has
infinitely many bases. If B and C are two bases, there
exists a unimodular matrix U ∈ GLn(Z) with B = CU .
Given an input basis, lattice reduction outputs a new
basis with short and nearly orthogonal vectors. Such a
reduced basis helps us to solve the SVP, and typical al-
gorithms are LLL [1] and BKZ [2].
The contribution of this study is to provide a for-

mulation for SVP via mixed integer quadratic program
(MIQP). For this we use a presolve technique. We solve
the MIQP problems generated from TU Darmstadt’s
benchmark instances in [3].
For a given positive integer n, we define [n] :=
{1, . . . , n}. {ℓ, u} denotes the set of integers ℓ, ℓ +
1, . . . , u−1, u for given integers ℓ and u such that ℓ ≤ u.

2. Mixed integer program

We briefly introduce a mixed integer program (MIP)
and an algorithm to solve MIPs, i.e., a branch-and-
bound (B&B) algorithm. The MIP is the problem of
minimizing an objective function over a nonempty set
with integrality restrictions. It is formulated by

θ∗ := min
x
{f(x) : x ∈ X,xj ∈ Z (j ∈ J)} , (1)

with an objective function f : X → R, a subset X of
Rn and a nonempty subset J ⊂ [n]. If x ∈ Rn satisfies
x ∈ X and xj ∈ Z for all j ∈ J , then x is said to be
feasible for (1) or a feasible solution of (1). The feasible
solution x∗ is an optimal solution of (1) if f(x∗) ≤ f(x)
for all feasible solutions x of (1).
We define a relaxation problem of (1), which is used

in the B&B algorithm for (1). This problem is obtained
by removing the integrality restrictions xj ∈ Z (j ∈ J).

θ∗R := min
x
{f(x) : x ∈ X} . (2)

It is clear that the optimal value θ∗R of (2) is a lower
bound of the optimal value θ∗ of (1), i.e., θ∗R ≤ θ∗.
The B&B algorithm is a general and widely used al-

gorithm to solve MIPs. It successively divides (1) by
using the integrality on xj (j ∈ J) until all the gener-
ated problems are solved. The generated problems are
called subproblems of (1). Then the B&B algorithm cre-
ates a search tree to enumerate the subproblems. The
relaxation problems (2) are used to divide a given sub-
problem and to avoid the complete enumeration of all
generated subproblems. See [4] for details.
For a positive semidefinite matrix Q and q ∈ Rn, if

we choose f(x) = xTQx + 2qTx and X is a nonempty
polyhedron, then (1) is called a mixed integer quadratic
program (MIQP). The relaxation problem is called a
quadratic program, which can be efficiently solved by a
barrier method and an interior-point method.

3. MIQP formulation for SVPs

We provide an MIQP formulation for SVPs. For this
we use a technique developed in [5]. This is one of the
presolve techniques, and restricts the search space of the
SVP. The presolve is a set of routines to remove unnec-
essary variables and constraints, and tighten the bounds

– 65 –

JSIAM Letters Vol. 9 (2017) pp.65–68 Keiji Kimura et al.

of decision variables of a given MIP. See [6] for details.
Applying this technique to SVP, we can formulate an
MIQP problem that has the same optimal solution to
the one of the original SVP.

3.1 MIQP formulation

SVP is the problem to find the shortest vector in the
lattice {Bx : x ∈ Zn} except for the zero vector 0n. This
is formulated by

min
x

{
∥Bx∥22 : x = (x1, . . . , xn)

T ∈ Zn, x ̸= 0n
}
, (3)

where ∥·∥2 is the 2-norm. θ∗ denotes the optimal value of
(3). This is not the form of the MIQP problem because
(3) has the the constraint x ̸= 0n.
We can however reformulate (3) into a form of MIQP

if every decision variable in (3) has finite lower and up-
per bounds. To explain this, we consider the following
optimization problem

min
x

{
∥Bx∥22 :

x ∈ Zn, x ̸= 0n,
ℓi ≤ xi ≤ ui (i ∈ [n])

}
, (4)

where ℓi and ui are finite values and ℓi ≤ ui for all
i = 1, . . . , n. If there exists i ∈ [n] such that ℓi > 0
or ui < 0, then we can remove the constraint x ̸= 0n
from (4), and thus the problem has the form of MIQP.
Otherwise, we add the binary auxiliary variables yi,v for
i ∈ [n] and v ∈ {ℓi, ui} as follows.

min
x,y


∥Bx∥22 :

n∑
i=1

yi,0 ≤ n− 1,

xi =

ui∑
v=ℓi

vyi,v,

ui∑
v=ℓi

yi,v = 1,

yi,v ∈ {0, 1} (i ∈ [n], v ∈ {ℓi, ui})


(5)

We remark that all SVPs in a numerical experiment in
Section 4 are converted into the form of (5).
As all the variables yi,v in (5) are binary, the con-

straint
∑ui

v=ℓi
yi,v = 1 means the only one variable yi,v

is 1 and the others are 0. Thus we obtain xi = v from∑ui

v=ℓi
vyi,v for a v such that yi,v = 1. The constraint∑n

i=1 yi,0 ≤ n−1 ensures that the number of zero in the
decision variables x1 to xn is at most n− 1, i.e., x ̸= 0n.
Therefore (5) is the form of MIQP.

3.2 Restriction of the search space of SVP

We introduce a technique to restrict the search space
of SVP. This technique is to find finite lower and upper
bounds ℓi and ui of every decision variables in (3) so
that an optimal solution of (3) is also optimal for (4).
The following lemma ensures that we can construct

an optimization problem which has the same optimal
solution as (3).

Lemma 1 Let M be a positive number. We consider
the following optimization problem

min
x

{
∥Bx∥22 :

x = (x1, . . . , xn)
T ∈ Zn,

x ̸= 0n, ∥Bx∥2 ≤M

}
. (6)

If (6) has a feasible solution, then the optimal value of
(6) is the same as that of (3).

For a given M > 0, we define the sets XM and
FM by XM = {x ∈ Rn : x ̸= 0, ∥Bx∥2 ≤M} and FM =

Algorithm 1: Algorithm to obtain ℓi and ui in (4)

Input: B = (b1, . . . , bn) ∈ Zn×n

Output: Lower and upper bounds ℓi, ui in (4)
ℓi ← −∞, ui ← +∞ (i = 1, . . . , n);
M ←− min{∥bi∥2 : i = 1, . . . , n};
do

for i← 1 to n do
v ← min

x
{xi : x ∈ F (ℓ, u)};

if ⌈v⌉ > ℓi then
ℓi ← ⌈v⌉ and update F (ℓ, u);

end
v ← max

x
{xi : x ∈ F (ℓ, u)};

if ⌊v⌋ < ui then
ui ← ⌊v⌋ and update F (ℓ, u);

end

end

while F (ℓ, u) is updated ;

XM ∩ Zn. It should be noted that FM is the set of
all feasible solutions of (6). Hence for any feasible so-
lution x ∈ FM , we have minx {xj : x ∈ FM} ≤ xj ≤
maxx {xj : x ∈ FM} for all j ∈ [n]. Removing x ̸= 0n
and the integrality restrictions from optimization prob-
lems in the left-hand and right-hand sides, we obtain

min
x
{xj : x ∈ F} ≤ xj ≤ max

x
{xj : x ∈ F} , (7)

where F = {x ∈ Rn : ∥Bx∥2 ≤M}.
By using (7), we propose an iterative approach in Al-

gorithm 1 for obtaining tighter lower and upper bounds
in (4). For ℓ, u ∈ Rn so that ℓ ≤ u and that may pos-
sibly take the values ℓi = −∞ and ui = +∞, we define
the set F (ℓ, u) by F (ℓ, u) = {x ∈ Rn : x ∈ F, ℓ ≤ x ≤ u}.
Replacing F in (7) by F (ℓ, u), we can expect that tighter
lower and upper bounds are computed in Algorithm 1.
Optimization problems in both sides in (7) and Algo-

rithm 1 are called second-order cone programs (SOCPs),
and can be efficiently solved by primal-dual interior-
point methods (PDIPMs). In fact, PDIPMs can com-
pute an approximate solution to any given precision in
polynomially many iterations. See [7] for details.
Finally, we remark that we may be able to solve

SOCPs in Algorithm 1 without applying any SOCP
solvers because they have simple forms. In fact, we can
provide optimal values and solutions of some SOCP
problems with a closed-form expression. For this, we fo-
cus on the first do-while loop in Algorithm 1. At the
first, we solve the following SOCPs.

min
x
{x1 : ∥Bx∥2 ≤M} (8)

and maxx {x1 : ∥Bx∥2 ≤M, ℓ1 ≤ x1}. Their optimal
values and solutions are provided with closed-form ex-
pressions. In fact, the optimal values are −M∥d1∥2 and
M∥d1∥2, and optimal solutions are −(M/∥d1∥2)B−1d1
and (M/∥d1∥2)B−1d1, respectively. Here di (i ∈ [n]) is
the ith column vector of B−T . Hence ℓ1 = ⌈−M∥d1∥2⌉
and u1 = ⌊M∥d1∥2⌋.

– 66 –

JSIAM Letters Vol. 9 (2017) pp.65–68 Keiji Kimura et al.

Algorithm 2: Algorithm for numerical experiments

Input: Dimension n and seed σ
Output: Optimal solutions x∗ and value θ∗ of (3)
1: Bo ←− Generator in [3] from n and σ;
2: B ←− Apply LLL reduction to Bo in Section 4.2

and 4.3, and BKZ reduction to Bo in Section 4.4;
3: Generate bounds ℓi and ui (i = 1, . . . , n) by

Algorithm 1 from B;
4: (x∗, θ∗)←− Solve (3) via (5);

Next, we solve the following SOCP in Algorithm 1.

min
x
{x2 : ∥Bx∥2 ≤M, ℓ1 ≤ x1 ≤ u1} . (9)

We assume that

ℓ1 ≤ −
(

M

∥d2∥2

)
dT1 d2 ≤ u1 (10)

holds. Then x∗ = −(M/∥d2∥2)B−1d2 is optimal
to (9). In fact, this solution x∗ is optimal to
minx {x2 : ∥Bx∥2 ≤M}. This is proved in a similar
manner to the case of (8), and thus it follows from (10)
that x∗ is optimal to (9). On the other hand, (10) may
fail. In fact it follows from Cauchy-Schwarz inequality
that the inequality

∣∣−(M/∥d2∥2)dT1 d2
∣∣ ≤M∥d1∥2 holds,

while the inequality
∣∣−(M/∥d2∥2)dT1 d2

∣∣ ≤ ⌊M∥d1∥2⌋
may not hold because the value at the left-hand side
may not be integer. If this inequality holds, then x∗ =
−(M/∥d2∥2)B−1d2 is an optimal solution of (9).
The following lemma is an extension of this discussion,

and may improve the performance of Algorithm 1.

Lemma 2 Let i ∈ {2, n}. In addition, B−T :=
(d1, . . . , dn). We focus on the minimization of the ith
iteration of the first do-while loop in Algorithm 1. Then
we have ℓj = −∞ and uj = +∞ for all j ∈ {i, n}. If we
have ℓj ≤ −MdTj di/∥di∥2 ≤ uj for all j ∈ [i − 1], then

x∗ = −(M/∥di∥2)B−1di is optimal for the minimization
and the optimal value is −M∥di∥2. Similarly, if we have
ℓi ≤ M∥di∥2 and ℓj ≤ MdTj di/∥di∥2 ≤ uj for all j ∈
[i − 1], then x∗ = (M/∥di∥2)B−1di is optimal for the
maximization of the ith iteration of the first do-while
loop in Algorithm 1, and the optimal value is M∥di∥2.

4. Numerical experiments

4.1 The setting for the numerical experiments

We report numerical results for some SVPs (5) ob-
tained by the generator that is available at [3]. For the
numerical experiments, we used a computer with 32
threads of Intel R⃝ Xeon R⃝ CPU E5-2687W with 3.1GHz
and 128GB RAM, and applied Algorithm 2. In Algo-
rithm 2, we applied the lattice reductions implemented
in fplll [8] to the generated matrix to improve compu-
tational efficiency. We used CPLEX 12.6.3 [9] to solve
(5). The parameters in CPLEX are default except for

• preprocessing presolve = no,

• mip tolerances mipgap = 1e-10,

The first parameter indicates whether we execute some
of the presolve techniques implemented in CPLEX or

Table 1. Numerical results for some benchmark problems in [3].

(n, seed) Time ∥Bx∗∥2 Nodes α

(40, 0) 3036.76 1702.46 5.3 ×107 1.03

(40, 76) 55.48 1434.38 1.6 ×106 0.87

(41, 31) 753.02 1561.65 1.8 ×107 0.93

(41, 135) 282.30 1480.57 6.6 ×106 0.89

(42, 47) 4168.99 1495.81 5.0 ×107 0.89

(43, 2) 6086.09 1545.39 8.0 ×107 0.90

(44, 8) 1006.02 1573.49 2.3 ×107 0.91

(45, 79) 6717.56 1547.23 7.2 ×107 0.88

(46, 16) 14246.33 1565.88 1.4 ×108 0.89

(47, 95) >86400 1678.65 4.7 ×108 0.94

(48, 7) >86400 1873.50 4.0 ×108 1.04

(49, 7) >86400 1927.24 4.1 ×108 1.07

(49, 126) >86400 1659.49 5.2 ×108 0.91

not. To obtain lower and upper bounds of the variables of
SVP, we chose the minimum value over ∥b1∥2, . . . , ∥bn∥2
as M in Lemma 1.

4.2 Numerical results for (5)

Table 1 displays the results for some TU Darmstadt’s
benchmark problems in [3]. The first column shows the
dimension n and seed that we used in the generator.
The second column indicates the CPU time to solve SVP
with the generated matrix in seconds. “>86400” means
that the algorithm cannot solve the problem within
86400 seconds = 1 day. The third column stands for
the optimal value or the computed upper bound of the
optimal value. The forth column indicates the number of
the generated subproblems in the B&B algorithm. The
last column is the approximation factor α defined by

α :=
∥Bx∗∥2

Γ(n/2 + 1)1/n| det(B)|1/n/
√
π
,

where x∗ is the computed solution by CPLEX, and
Γ(n/2+1) stands for the value of the gamma function at
(n/2+1). In particular, the approximation factor is used
as the measure of the quality of the computed solution.
In [3], it is required to find a feasible solution whose ap-
proximation factor is less than 1.05. From Table 1, we
see that SVPs with up to 46 are solved within 1 day.
However, in each dimension of n = 40 and 41, there is a
big gap on time required to solve the SVP with different
seeds.

4.3 Behavior of the B&B algorithm for SVPs

The B&B algorithm for the MIQP formulation (5)
finds an optimal solution soon, while it spends much
computational time to prove optimality. The left fig-
ure of Fig. 1 displays the transition of upper and lower
bounds by the B&B algorithm for SVP with (n, seed) =
(44, 8). We observe that (i) the B&B algorithm finds an
optimal solution much early, (ii) the lower bounds get in-
creased slowly, that is, it consumes much computational
time to prove optimality. Therefore it is important to de-
velop techniques so that the lower bounds get increased
more quickly. It might be good to combine with conven-
tional techniques in lattices.
The right figure of Fig. 1 displays a relationship be-

tween the approximation factors and CPU times for 200
randomly generated SVPs with n = 40. We see that the

– 67 –

JSIAM Letters Vol. 9 (2017) pp.65–68 Keiji Kimura et al.

1e
+

04
5e

+
04

2e
+

05
5e

+
05

2e
+

06
5e

+
06

Time

lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

upper bound
lower bound

0.90 0.95 1.00 1.05

50
10

0
20

0
50

0
10

00
20

00
50

00
10

00
0

approximation factor

C
pu

 ti
m

e[
se

c]

Fig. 1. The log-scale plot of upper and lower bounds in the search

tree for SVP with (n, seed) = (44, 8) (left), and the log-scale plot
of CPU time and α for 200 SVPs with n = 40 (right).

Table 2. Numerical results for some benchmark problems in [3]
reduced by BKZ20.

(n, seed) Time ∥Bx∗∥2 Nodes α

(40, 0) 408.08 1702.46 1.0 ×107 1.03

(40, 76) 15.67 1434.38 4.5 ×105 0.87

(41, 31) 90.71 1561.65 2.5 ×106 0.93

(41, 135) 58.94 1480.57 1.5 ×106 0.89

(42, 47) 58.92 1495.81 1.7 ×106 0.89

(43, 2) 157.63 1545.39 4.0 ×106 0.90

(44, 8) 313.18 1573.49 7.6 ×106 0.91

(45, 79) 288.11 1547.23 7.2 ×106 0.88

(46, 16) 757.33 1565.88 1.7 ×107 0.89

(47, 95) 5497.33 1678.65 7.4 ×107 0.94

(48, 7) 13827.97 1703.24 1.5 ×108 1.04

(49, 7) >86400 1826.20 5.3 ×108 1.01

(49, 126) 13319.51 1659.49 1.4 ×108 0.91

computational time and the approximation factor are
related to positive correlation, i.e., the B&B algorithm
can solve quickly for SVPs whose approximation factor
is small. In fact, the optimal values of such SVPs are
also small and as a result, the CPU time for proving
optimality becomes shorter.

4.4 LLL vs BKZ with block size 20

BKZ is a block-wise generalization of LLL, and it uses
a block size parameter β. Larger β outputs a better basis,
but it requires more running time. In practice, β = 20
achieves the best time/quality compromise. We applied
BKZ reduction with block size 20 instead of LLL re-
duction to the generated matrix B. The setting of the
numerical experiment is the same as in subsection 4.1.
Table 2 displays the numerical results of CPLEX for

SVPs to which the BKZ reduction is applied. We ob-
serve from Tables 1 and 2 that by applying the BKZ
reduction, we can solve more 3 to 20 times faster than
SVPs to which the LLL reduction is applied. One of the
reasons is because the search space of BKZ reduced basis
is narrower than that of LLL reduced basis. In fact, we
can prove under mild assumptions that upper and lower
bounds obtained by Algorithm 1 for BKZ reduced basis
are smaller than those for LLL reduced basis. We give a
more precise statement as follows.

Lemma 3 For given bases B = (b1, . . . , bn) and B̃ =
(b̃1, . . . , b̃n), we assume that (i) SVP for B has the same
optimal value as SVP for B̃, (ii) Algorithm 1 for B re-
turns ℓi = −M∥bi∥2 and ui = M∥bi∥2 for i ∈ [n], and
that (iii) ∥b̃i∥2 ≤ ∥bi∥2 for i ∈ [n]. Then the bounds ℓ̃i

and ũi by Algorithm 1 for B̃ satisfy ℓi ≤ ℓ̃i ≤ ũi ≤ ui

for all i ∈ [n].

We remark that the BKZ reduced basis B̃ satisfies (iii)
in Lemma 3 in comparison to the LLL reduced basis B
because the BKZ reduction is a generalization of the
LLL reduction (See [10, Section 2.3]). Hence the search
space of SVP for B̃ is narrower than that of SVP for B
if (ii) in Lemma 3 holds.

5. Conclusion

We provided an MIQP formulation of SVPs and solved
some benchmark problems in [3] with the dimension up
to n = 49. In addition, we find a feasible solution whose
approximation factor α is relatively small for dimension
n ≥ 50. We displayed the numerical results by the-state-
of-the-art commercial solver CPLEX for the benchmark
problems. The BKZ reduction is more effective for the
B&B algorithm than the LLL reduction although the
former is more expensive than the latter.
To estimate the security level of the cryptography

based on SVP, we need to solve SVPs with larger di-
mension n. It is important to develop cut separation
techniques for SVP. See e.g., [4, Chapter 8] for cut sep-
aration. This technique will find better lower bounds of
optimal values in the B&B tree, and enable to solve such
larger SVPs in reasonable time. The development of such
a technique is important future work to improve the per-
formance of the B&B algorithm for SVPs.

Acknowledgments

This work was supported by JST CREST Grant Num-
ber JPMJCR14D6, Japan.

References

[1] A. K. Lenstra, H. W. Lenstra Jr and L. Lovász, Factor-
ing polynomials with rational coefficients, Math. Ann., 261
(1982), 515–534.

[2] C. P. Schnorr and M. Euchner, Lattice basis reduction: im-
proved practical algorithms and solving subset sum problems,
Math. Program., 66 (1994), 181–199.

[3] SVP CHALLENGE, https://www.latticechallenge.org/

svp-challenge/.
[4] T. Achterberg: Constraint Integer Programming, Ph.D. The-

sis, Technische Universität Berlin, 2007.
[5] K. Kimura and H. Waki, A Mixed Integer Quadratic For-

mulation for the Shortest Vector Problem, to appear in:
Mathematical Modelling for Next-Generation Cryptography,
T. Takagi et al. eds., Mathematics for Industry, Springer,

2017.
[6] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg and

D. Weninger, Multi-Row Presolve Reductions in Mixed In-
teger Programming, in: Proc. of the Twenty-Sixth RAMP

Symposium, pp. 181–196, 2014.
[7] F. Alizadeh and D. Goldfarb, Second-order cone program-

ming, Math. Program., 95 (2003), 3–51.
[8] The FPLLL development team, fplll, a lattice reduction li-

brary, https://github.com/fplll/fplll, 2016.
[9] IBM ILOG CPLEX Optimizer 12.6.3, IBM ILOG 2015.

[10] N. Gama and P. Q. Nguyen, Predicting Lattice Reduction,
in: Advances in Cryptology - EUROCRYPT 2008, N. Smart

eds., LNCS, vol. 4965, pp. 31–51, Springer, 2008.

– 68 –

