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BASIC BOUNDS OF FRÉCHET CLASSES

Jaroslav Skřivánek

Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental at-
tributes of the associated copulas. A minimal system of algebraic bounds and related basic
bounds can be defined using properties of pointed convex polyhedral cones and their rela-
tionship with non-negative solutions of systems of linear homogeneous Diophantine equations,
largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet–
Hoeffding bounds. We provide conditions of compatibility and propose tools for an explicit
description of the basic bounds of simple Fréchet classes.
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1. INTRODUCTION

A copula can be regarded as an abstract structure which fully represents relationship
of random variables. As mentioned in [5], there are two main reasons to be interested
in copulas. Firstly, it is a way of studying scale-free measures of dependence. Secondly,
copulas are starting points for constructing families of multivariate distributions, some-
times with a view to simulation (see e. g. [2]). Recent interest in copulas was prompted
by applicability in finance and insurance.

Let R and N represent the sets of all real and all natural numbers (including 0). Let
a = (a1, . . . , an) and b = (b1, . . . , bn) be members of Rn and ζ ⊆ [n] = {1, 2, . . . , n}. We

will denote selζ(a, b) a vector (c1, . . . , cn) such that ci =
{

ai if i ∈ ζ
bi if i /∈ ζ

. For example,

sel{1,3}((0, 0.2, 0.5), (0.4, 0.3, 1)) = (0, 0.3, 0.5). For an n-copula C and a, b ∈ 〈0, 1〉n,
a ≤ b in component-wise ordering, the C-volume of an n-box 〈a, b〉 =

∏n
i=1 〈ai, bi〉

(Cartesian product) is given by

VC(〈a, b〉) =
∑

ζ⊆[n]

(−1)|ζ| C (selζ(a, b)) (1)

where |ζ| is the cardinality of the set ζ.
An n-copula is fully determined by its performance on 〈0, 1〉n. So, we can consider

the n-copula as a function C : 〈0, 1〉n → 〈0, 1〉 endowed with the next properties:
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(i) C(x) = 0 whenever x = (x1, . . . , xn) ∈ 〈0, 1〉n has at least one component equal
to 0 (C is grounded),

(ii) C(x) = xk whenever all components of x ∈ 〈0, 1〉n are equal to 1 except for the
kth one (uniformity of 1-margins),

(iii) VC(〈a, b〉) ≥ 0 for all a and b from 〈0, 1〉n such that a ≤ b (C is n-increasing).

Any k-margin of a copula is again a k-copula. For a nonempty set υ = {j1, j2, . . . ,
jk} ⊆ [n] with j1 < j2 < . . . < jk and an n-copula C, a υ-margin of C is its k-margin
Cυ : 〈0, 1〉k → 〈0, 1〉, defined by Cυ(xυ) = C (selυ(x,1n)) where xυ = (xj1 , xj2 , . . . , xjk

)
and 1n ∈ Rn is the row vector of ones. Let us broaden the definition to C∅ = 1. We
will call the set υ, associated with Cυ, the determinative set of the copula Cυ.

Let S be a system of subsets of [n]. The Fréchet class Fn({Cυ; υ ∈ S}) is the set
of all n-copulas C̃(x) with given υ-margin C̃υ(xυ) equal to Cυ(xυ) for each υ ∈ S.
We call the set {Cυ; υ ∈ S} of copulas compatible if Fn({Cυ; υ ∈ S}) 6= ∅. Because
given margins must be identical on common parts of the determinative sets, the set {Cυ;
υ ∈ S} will further be expected to satisfy

Cζ

(
selζ∩η(xζ ,1|ζ|)

)
= Cη

(
selζ∩η(xη,1|η|)

)
for any ζ, η ∈ S (2)

in context of Fréchet classes. For any family S ⊆ P ([n]) (power set of [n]), we call the
system ∆S = {ζ ∈ P ([n]); |ζ| ≤ 1 or (∃η ∈ S) : ζ ⊆ η} the downward closure of S in
P ([n]) (ordered by inclusion). Together with given margins Cυ, their margins and all
1-margins are in fact fixed too. If the set {Cυ; υ ∈ S} is compatible then, in addition to
defining all υ-margins Cυ for υ ∈ S, there are also clearly identified all ζ-margins Cζ for
ζ ∈ ∆S. For example, in the Fréchet class F4(C{1,2,3}, C{2,3,4}), all four 1-margins are
uniform by definition of copula and {1, 2}-, {1, 3}-, {2, 3}-, {2, 4}- and {3, 4}-margins
are also uniquely given.

Fréchet classes are studied largely in context of construction of multivariate distri-
butions. The most frequent are questions of uniqueness, subfamilies with desirable
properties, boundaries and their nature (see e. g. [4]). We strive after description of
special upper and lower bounds of general Fréchet classes, providing results of the paper
[7] in detail.

Let C be an n-copula and x ∈ 〈0, 1〉n. The requirement of non-negativity of C-volume
leads to a series of inequalities

VC (〈selζ(0n,x), selζ(x,1n)〉) =
∑
η⊇ζ

η⊆[n]

(−1)|ζ|+|η|Cη(xη) ≥ 0 (3)
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for all ζ ⊆ [n]. For example, any 3-copula C must satisfy

1 −x1 −x2 −x3 +C{1,2} +C{1,3} +C{2,3} −C ≥ 0
x1 −C{1,2} −C{1,3} +C ≥ 0

x2 −C{1,2} −C{2,3} +C ≥ 0
x3 −C{1,3} −C{2,3} +C ≥ 0

C{1,2} −C ≥ 0
C{1,3} −C ≥ 0

C{2,3} −C ≥ 0
C ≥ 0

(4)

where Cζ represents everywhere Cζ(xζ). A non-negative combination of these inequali-
ties, which eliminate free proper margins of C̃ ∈ Fn({Cυ; υ ∈ S}), form a bound of the
Fréchet class. For example, C̃{1,3} and C̃{2,3} are free proper margins in a Fréchet class
F3(C{1,2}). We get

1− x3 − C{1,2} + C̃ ≥ 0 (5)

by adding the first three inequalities corresponding to (4) which provides the lower
bound −1 + x3 + C{1,2} for this class.

This is just the type of boundaries of Fréchet classes that are studied in this article.

2. ALGEBRAIC BOUNDS

In the following, we repeatedly use the identities

|{θ ∈ P ([n]) ; |θ| = i & η ⊆ θ ⊆ ν ⊆ [n]}| =
(
|ν| − |η|
i− |η|

)
k∑

i=0

(−1)i

(
k

i

)
=

{
0 for k > 0
1 for k = 0

(6)

where η ⊆ ν ⊆ [n]. Let us denote geqζ(C)(x) the C-volume
∑

η⊇ζ(−1)|ζ|+|η|Cη(xη) in
(3) for any n-copula C, x ∈ 〈0, 1〉n and ζ ⊆ [n]. Relationship between these geq-volumes
and margins can be expressed in matrix form by(

geqζ(C)(x)
)
ζ⊆[n]

= G[n] · (Cζ(xζ))ζ⊆[n] (7)

where

G[n] = (gζη)ζ,η⊆[n] , gζη =
{

(−1)|ζ|+|η| for ζ ⊆ η,
0 otherwise,

(8)

is a matrix with Boolean indexed entries and
(
geqζ(C)(x)

)
ζ⊆[n]

and (Cζ(xζ))ζ⊆[n] are

considered as column vectors. The matrix G[n] is regular and the relationship can be
reversed

(Cζ(xζ))ζ⊆[n] = H[n] ·
(
geqζ(C)(x)

)
ζ⊆[n]

(9)

where

H[n] = (hζη)ζ,η⊆[n] , hζη =
{

1 for ζ ⊆ η,
0 otherwise, (10)
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is the inverse matrix of G[n] and the elements of G[n] ·H[n] = (kζη)ζ,η⊆[n] are

kζη =
∑

θ⊆[n] gζθhθη =
{

1 for ζ = η
0 otherwise using (6) for ζ ⊆ η.

Let us consider relation∑
ζ⊆[n]

αζgeqζ(C̃)(x) =
∑

ζ⊆[n]

ᾱζC̃ζ(xζ) (11)

for some row vector α = (αζ)
T
ζ⊆[n] with non-negative components and ᾱ = α · G[n] =

(ᾱζ)
T
ζ⊆[n] according to (7), where T denotes transposition. We call the corresponding

function
∑

ζ∈∆S
−ᾱζ

ᾱ[n]
Cζ(xζ) the algebraic bound of the Fréchet class Fn({Cυ; υ ∈ S})

if and only if ᾱ[n] 6= 0 and ᾱζ = 0 for each ζ ∈ P([n])\ (∆S ∪ {[n]}) on the right side of
(11). In this case, ∑

ζ∈∆S

ᾱζCζ(xζ) + ᾱ[n]C̃(x) ≥ 0 (12)

is the associated inequality as C̃ζ = Cζ for C̃ ∈ Fn({Cυ; υ ∈ S}) and ζ ∈ ∆S. This
bound is lower algebraic bound if ᾱ[n] > 0 and upper algebraic bound if ᾱ[n] < 0.

The analogue of the following lemma is shown in the paper [7].

Lemma 2.1. Let S ⊆ P([n]) be a family of subsets of [n]. If {Cυ; υ ∈ S} is a compatible
set of copulas then each function of the form Cυ(xυ) is an upper algebraic bound for any
υ ∈ ∆S, each function of the form

∑m
i=1 Cυi(xυi)− |m|+ 1 is a lower algebraic bound

for any partition {υ1, υ2, . . . , υm} of [n] with υi ∈ ∆S and 0 is also a lower algebraic
bound of Fn({Cυ; υ ∈ S}).

On the other hand, let a function C̃(x) be n-increasing on 〈0, 1〉n, bounded above by
each function of the form

F (x) = Cυ(xυ) for some υ ∈ S or F (x) = xi for some i /∈ ∪S (13)

and bounded below by each function of the form

G(x) = Cυ(xυ)− n + |υ|+
∑
i/∈υ

xi for some υ ∈ S or G(x) = 0 (14)

on 〈0, 1〉n. Then C̃ ∈ Fn({Cυ; υ ∈ S}).

P r o o f . The following identities are consequence of the identity C̃υ =
∑

ζ⊇υ geqζ(C̃),
as a component of (9). For any υ ∈ ∆S, Cυ(xυ) is an upper algebraic bound of Fn({Cυ;
υ ∈ S}) because

0 ≤
∑
ζ⊇υ

ζ [n]

geqζ(C̃) = Cυ − C̃

for any C̃ ∈ Fn({Cυ; υ ∈ S}). For any partition {υ1, υ2, . . . , υm} of [n] with members
from ∆S,

∑m
i=1 Cυi − |m|+ 1 is a lower algebraic bound as

0 ≤
∑

ζ⊇υ1∩υ2
ζ!υ1, ζ!υ2

geqζ(C̃) +
∑

ζ⊇(υ1∪υ2)∩υ3
ζ!υ1∪υ2, ζ!υ3

geqζ(C̃) +
∑

ζ⊇(υ1∪υ2∪υ3)∩υ4
ζ!υ1∪υ2∪υ3, ζ!υ4

geqζ(C̃) + . . .
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+
∑

ζ⊇
Sm−2

j=1 υj∩υm−1

ζ!
Sm−2

j=1 υj , ζ!υm−1

geqζ(C̃) +
∑

ζ⊇
Sm−1

j=1 υj∩υm

ζ!
Sm−1

j=1 υj , ζ!υm

geqζ(C̃)

=
[
1− C̃υ1 − C̃υ2 + C̃υ1∪υ2

]
+
[
1− C̃υ1∪υ2 − C̃υ3 + C̃υ1∪υ2∪υ3

]
+
[
1− C̃υ1∪υ2∪υ3 − C̃υ4 + C̃υ1∪υ2∪υ3∪υ4

]
+ . . .

+
[
1− C̃Sm−2

j=1 υj
− C̃υm−1 + C̃Sm−1

j=1 υj

]
+
[
1− C̃Sm−1

j=1 υj
− C̃υm + C̃

]
= |m| − 1−

m∑
i=1

Cυi
+ C̃

for any C̃ ∈ Fn({Cυ; υ ∈ S}). On account of

0 ≤ geq[n](C̃) = C̃,

the function 0 is also a lower algebraic bound of Fn({Cυ; υ ∈ S}).
On the other hand, let a function C̃(x) be n-increasing on 〈0, 1〉n and G ≤ C̃ ≤ F on

〈0, 1〉n for any G of the form (14) and any F of the form (13). The values of C̃ are inside
〈0, 1〉 as any value of a function of (13) is less than 1 and the functions (14) contain
0. To show that C̃ is a copula from Fn({Cυ; υ ∈ S}), we are going to prove that C̃ is
grounded, its 1-margins are uniform and its υ-margin is Cυ for any υ ∈ S.

Let the kth component xk of x ∈ 〈0, 1〉n be 0. As the union of determinative sets of
all given margins of (13) (including the 1-margins) is [n], k belongs to the determinative
set υ of some F of the form (13). But since F is an υ-copula and k ∈ υ then 0 =
F (xυ) ≥ C̃(x) ≥ 0 and C̃ is grounded.

Let k ∈ [n] and all components of x, except for the kth one, be equal to 1. As k belongs
to the determinative set τ of some F then C̃(x) ≤ F (xτ ) = xk. On the other hand, let
G = Cυ−n+|υ|+

∑
i/∈υ xi be of the form (14) for some υ ∈ S. If k ∈ υ then Cυ(xυ) = xk

and G(x) = Cυ(xυ)−n+ |υ|+
∑

i/∈υ xi = xk−n+ |υ|+n−|υ| = xk (as xi = 1 for i /∈ υ).
If k /∈ υ, we get G(x) = Cυ(xυ)−n+ |υ|+

∑
i/∈υ xi = 1−n+ |υ|+n−|υ|−1+xk = xk.

Consequently, xk = G(x) ≤ C̃(x) and thus C̃(x) = xk. So, {k}-margin of C̃ is uniform.
In the last step, we will prove that υ-margin of C̃ is identical to Cυ for each υ ∈ S.

For any x ∈ 〈0, 1〉n and y = selυ(x,1n), one has C̃(y) ≤ Cυ(yυ) = Cυ(xυ) and C̃(y) ≥
Cυ(yυ) − n + |υ| +

∑
i/∈υ yi = Cυ(xυ) − n + |υ| + n − |υ| = Cυ(xυ) as Cυ comes from

(13) and Cυ − n + |υ|+
∑

i/∈υ C{i} from (14). �

We use knowledge about non-negative solutions of a system of linear homogeneous
Diophantine equations as a tool of the following investigation. A linear half-space of Rm

is a subset of Rm of the form {α ∈ Rm; c1α1 + c2α2 + . . . +cmαm ≥ 0} for some fixed
nonzero vector (c1, c2, . . . , cm) ∈ Rm. A convex polyhedral cone Cm in Rm is defined to
be the intersection of finitely many half-spaces. We say that such a cone Cm is pointed
if it does not contain a line. In the following, we will always mean a pointed convex
polyhedral cone, when we mention a cone. A one-dimensional face of the cone is called
an extreme ray. A cone Cm has only finitely many extreme rays r1, r2, . . . , rk and is the
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convex hull of its extreme rays. Thus, for given nonzero members βi ∈ ri, each point
α ∈ Cm can be expressed in the form α = c1β1 + c2β2 + . . . +ckβk, where ci ≥ 0 for
every i = 1, 2, . . . , k. We call such a set {β1,β2, . . . ,βk} basis of the cone Cm. Each
extreme ray can be expressed as ri = {aβi; a is non-negative}. Any other basis has the
form {a1β1, a2β2, . . . , akβk} where a1, a2, . . . , ak are positive. The basis of the cone
Cm is a minimal (in ordering by inclusion) such subset B of Cm that every element of
Cm can be expressed (not necessarily uniquely) as a linear combination of elements of B
with non-negative combination coefficients.

The set of all non-negative solutions of a system of linear homogeneous equations
is a cone since every equation can be interpreted as a conjunction of two inequalities.
Works [6] and [8] indicate that, if the system is in addition Diophantine then there is
a basis of all non-negative solutions such that each member of this basis consists of
natural components (N-solution) and its support (set of indices of nonzero components)
is minimal. Of course, the members of such a basis are minimal in the set of all nonzero
N-solutions. Some algorithms to search for such basis are presented, e. g., in papers [1]
and [9].

Algebraic bounds are defined through non-negative linear combinations of geq-volumes
which eliminate coefficient ᾱζ at such C̃ζ in the relation (11) that ζ ∈ P([n])\ (∆S ∪ {[n]}).
So, all the coefficients α = (αζ)

T
ζ∈P([n]) of such a combination are defined as a non-

negative real solution of the system of linear homogeneous Diophantine equations

α ·G[n]
S = 0|P([n])\(∆S∪{[n]})| (15)

written in matrix form where G
[n]
S is the submatrix of G[n] formed just by those (ζ, η)-

entries for which η ∈ P ([n]) \ (∆S ∪ {[n]}). Let BS be a basis of all solutions of (15).
For an element β ∈ BS and β̄ = β ·G[n], the inequality∑

ζ∈∆S

β̄ζCζ(xζ) + β̄[n]C̃(x) ≥ 0 (16)

of the type (12) is associated with either a lower or an upper algebraic bound or it is just
a necessary compatibility condition of the set {Cυ; υ ∈ S}, depending on whether the
coefficient β̄[n] at C̃(x) is positive, negative or zero. Let g[n] be the [n]-column of G[n].
As β̄[n] = β ·g[n], the finite basis BS can be expressed as the union of three disjoint parts
BL = {β ∈ BS ; β·g[n] > 0}, BU = {β ∈ BS ; β·g[n] < 0} and B0 = {β ∈ BS ; β·g[n] = 0}
separated by the hyperplane

α · g[n] = 0. (17)

Let us define the function

bL(x) = max

 ∑
ζ∈∆S

−β̄ζ

β̄[n]

Cζ(xζ); β ∈ BL

 (18)

as the basic lower bound and the function

bU (x) = min

 ∑
ζ∈∆S

−β̄ζ

β̄[n]

Cζ(xζ); β ∈ BU

 (19)



Basic bounds of Fréchet classes 101

as the basic upper bound of the Fréchet class Fn({Cυ; υ ∈ S}). It is obvious that these
functions are not dependent on the choice of the basis BS and they are bounds of the
Fréchet class Fn({Cυ; υ ∈ S}) if this is nonempty.

The following necessary conditions for compatibility are the result of the previous
arguments.

Lemma 2.2. Let the set {Cυ; υ ∈ S} of copulas be compatible, BS = BL∪BU ∪B0 be a
basis of all solutions of (15) and x ∈ 〈0, 1〉n. Then each of the following three conditions
is valid

(i) Cζ

(
selζ∩η(xζ ,1|ζ|)

)
= Cη

(
selζ∩η(xη,1|η|)

)
for any ζ, η ∈ S

(ii) 0 ≤
∑

ζ∈∆S

(
ᾱζ

ᾱ[n]
− β̄ζ

β̄[n]

)
Cζ(xζ) for any α ∈ BL and β ∈ BU

(iii) 0 ≤
∑

ζ∈∆S

β̄ζCζ(xζ) for any β ∈ B0.

(20)

P r o o f .

(i) The margins of any Fréchet class must be identical on common parts of the deter-
minative sets.

(ii) For all α ∈ BL and β ∈ BU ,
∑

ζ∈∆S
−ᾱζ

ᾱ[n]
Cζ(xζ) is a lower bound of the correspond-

ing Fréchet class and thus is smaller than the upper bound
∑

ζ∈∆S
−β̄ζ

β̄[n]
Cζ(xζ).

(iii)
∑

ζ∈∆S β̄ζCζ(xζ) =
∑

ζ⊆[n] βζgeqζ(C̃)(x) ≥ 0 for any β ∈ B0 and C̃ ∈ Fn({Cυ;
υ ∈ S}). �

Lemma 2.3. Let {Cυ(xυ); υ ∈ S} be a set of copulas satisfying all three conditions
(20). Let bL(x) and bU (x) be the corresponding basic bounds defined by (18) and (19).
Then bL(x) ≥ G(x) for each lower algebraic bound G and bU (x) ≤ F (x) for each upper
algebraic bound F of the Fréchet class Fn({Cυ; υ ∈ S}) and x ∈ 〈0, 1〉n.

P r o o f . The set {Cζ}ζ∈∆S is well defined due to (i) in (20). Let BS = BL ∪BU ∪B0 =
{β1,β2, . . . ,βk} be a basis of all solutions of (15) and H(x) =

∑
ζ∈∆S

−ᾱζ

ᾱ[n]
Cζ(xζ) be an

algebraic bound of the corresponding Fréchet class, where ᾱ ·H[n] = α = c1β
1 + c2β

2 +
. . . + ckβk for some non-negative c1, c2, . . . , ck. For any x ∈ 〈0, 1〉n, let y be such that
bL(x) ≤ y ≤ bU (x) and consequently

∑
ζ∈∆S β̄i

ζCζ(xζ)+β̄i
[n]y ≥ 0 for each βi ∈ BL∪BU .

There is always such a number because of (ii) in (20). Moreover,
∑

ζ∈∆S β̄i
ζCζ(xζ) +

β̄i
[n]y ≥ 0 for each βi ∈ B0 on account of (iii) in (20). Therefore,

∑
ζ∈∆S β̄i

ζCζ(xζ) +

β̄i
[n]y ≥ 0 for each βi ∈ BS and

∑k
i=1 ci

(∑
ζ∈∆S β̄i

ζCζ(xζ) + β̄i
[n]y
)

=
∑

ζ∈∆S ᾱζCζ(xζ)
+ ᾱ[n]y ≥ 0. It means that y ≥ H(x) if H is a lower algebraic bound, respectively
y ≤ H(x) if H is an upper algebraic bound. �

The following theorem is immediate consequence of Lemmas 2.1, 2.2 and 2.3.
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Theorem 2.4. The set {Cυ; υ ∈ S} of copulas is compatible if and only if all conditions
of (20) are satisfied and there exists such n-increasing function C̃(x) that bL(x) ≤
C̃(x) ≤ bU (x) for each x ∈ 〈0, 1〉n.

3. EXPLICIT DESCRIPTION OF BASIC BOUNDS

In this section we offer a tool that could facilitate the explicit expression of basic bounds
of simple Fréchet classes.

Lemma 3.1. Let S be a family of sets over [n], α = (αη)T
η⊆[n] be a row vector with

non-negative components and ᾱ = α ·G[n] where G[n] is defined by (8). Then the next
two propositions are equivalent

(i) (∀ν ∈ P([n])\ (∆S ∪ {[n]})) : ᾱν = 0

(ii) (∀ν ∈ P([n])\ (∆S ∪ {[n]})) :

αν =
∑

ζ∈∆S
ζ⊆ν

( ∑
η/∈∆S
ζ⊆η⊆ν

(−1)|η|+|ζ|+1
)
αζ . (21)

P r o o f . As ᾱν =
∑

ζ⊆ν(−1)|ν|+|ζ|αζ , ᾱν = 0 if and only if

αν =
∑
ζ ν

(−1)|ν|+|ζ|+1αζ (22)

for nonempty ν.
Let ᾱν = 0 for each ν ∈ P([n])\ (∆S ∪ {[n]}). This direction of the proof will be

performed by structural induction over members of P([n])\ (∆S ∪ {[n]}).

I. Let ν /∈ ∆S ∪ {[n]} and ζ ∈ ∆S for each ζ  ν. In terms (22), there is αν =∑
ζ ν(−1)|ν|+|ζ|+1αζ . As {η /∈ ∆S; ζ ⊆ η ⊆ ν} = {ν}, it is just the identity (21).

II. Now, let ν /∈ ∆S ∪ {[n]} and for each such θ  ν that θ /∈ ∆S, (21) is met, i. e.

αθ =
∑

ζ∈∆S
ζ⊆θ

(∑
η/∈∆S
ζ⊆η⊆θ

(−1)|η|+|ζ|+1

)
αζ . Then, starting with (22),

αν =
∑
ζ ν

(−1)|ν|+|ζ|+1αζ =
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ +
∑

θ/∈∆S
θ ν

(−1)|ν|+|θ|+1αθ

=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ +
∑

θ/∈∆S
θ ν

(−1)|ν|+|θ|+1
∑

ζ∈∆S
ζ⊆θ

∑
η/∈∆S
ζ⊆η⊆θ

(−1)|η|+|ζ|+1αζ

=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ +
∑

ζ∈∆S
ζ⊆ν

∑
θ/∈∆S
ζ⊆θ ν

∑
η/∈∆S
ζ⊆η⊆θ

(−1)|η|+|ζ|+|ν|+|θ|αζ
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=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ +
∑

ζ∈∆S
ζ⊆ν

∑
η/∈∆S
ζ⊆η ν

∑
θ/∈∆S
η⊆θ ν

(−1)|η|+|ζ|+|ν|+|θ|αζ

(6)
=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ +
∑

ζ∈∆S
ζ⊆ν

∑
η/∈∆S
ζ⊆η ν

(−1)|η|+|ζ|
|ν|−1∑
i=|η|

(−1)|ν|+i

(
|ν| − |η|
i− |η|

)
αζ

(6)
=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ +
∑

ζ∈∆S
ζ⊆ν

∑
η/∈∆S
ζ⊆η ν

(−1)|η|+|ζ|+1αζ

=
∑

ζ∈∆S
ζ⊆ν

∑
η/∈∆S
ζ⊆η⊆ν

(−1)|η|+|ζ|+1αζ .

On the other hand, let (21) hold for each ν ∈ P([n])\ (∆S ∪ {[n]}). Then

ᾱν =
∑
ζ⊆ν

(−1)|ν|+|ζ|αζ =
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|αζ +
∑

θ/∈∆S
θ⊆ν

(−1)|ν|+|θ|αθ

=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|αζ +
∑

θ/∈∆S
θ⊆ν

(−1)|ν|+|θ|
∑

ζ∈∆S
ζ⊆θ

∑
η/∈∆S
ζ⊆η⊆θ

(−1)|η|+|ζ|+1αζ

=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|αζ +
∑

ζ∈∆S
ζ⊆ν

∑
θ/∈∆S
ζ⊆θ⊆ν

∑
η/∈∆S
ζ⊆η⊆θ

(−1)|ν|+|ζ|+1+|η|+|θ|αζ

=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|αζ +
∑

ζ∈∆S
ζ⊆ν

∑
η/∈∆S
ζ⊆η⊆ν

∑
θ⊆[n]

η⊆θ⊆ν

(−1)|ν|+|ζ|+1+|η|+|θ|αζ

(6)
=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|αζ +
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1
∑

η/∈∆S
ζ⊆η⊆ν

|ν|∑
i=|η|

(−1)|η|+i

(
|ν| − |η|
i− |η|

)
αζ

(6)
=
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|αζ +
∑

ζ∈∆S
ζ⊆ν

(−1)|ν|+|ζ|+1αζ = 0.

�

The previous lemma indicates that the cone of non-negative solutions of the equation
(15) is isomorphic to a cone in some lower dimensional space.

Theorem 3.2. Let S be a family of subsets of [n] not containing [n]. The mapping
proj : CS → C′S , (αζ)

T
ζ∈P([n]) 7→ (αζ)

T
ζ∈∆S∪{[n]} is a linear one-to-one correspondence of

the cone CS of all solutions α = (αζ)
T
ζ∈P([n]) of the system

α ·G[n]
S = 0|P([n])\(∆S∪{[n]})| (23)
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meeting the condition
(∀ζ ∈ P([n])) : αζ ≥ 0 (24)

and the cone C′S of all such vectors α′ = (αζ)
T
ζ∈∆S∪{[n]} that

(∀ζ ∈ ∆S ∪ {[n]}) : αζ ≥ 0 & (25)

(∀ν ∈ P([n])\ (∆S ∪ {[n]})) :
∑

ζ∈∆S
ζ⊆ν

 ∑
η/∈∆S
ζ⊆η⊆ν

(−1)|η|+|ζ|+1

αζ ≥ 0.

Moreover, this mapping keeps correspondence of the vectors having all components
natural.

P r o o f . The function proj is an orthogonal projection, that is linear. The rest of the
claim is an immediate consequence of Lemma 3.1. �

According to Theorem 3.2, the cones CS and C′S are in some sense similar and they
correspond to each other in linear features. We will use this resemblance to give an
explicit description of the basic bounds of general Fréchet classes Fn(∅). Use of this
technique appears promising for describing the basic bounds general Fréchet classes,
where ∆S consists of several 2-element subsets of [n]. Overall, similar investigations of
one higher full horizon ∆S = {υ ⊆ [n]; |υ| ≤ 2} of given margins is technically difficult
without a computer. The cardinality of the basis BS of the relevant cone is 69 for n = 4,
694 for n = 5 and steeply increases with n.

Theorem 3.3. (Fréchet–Hoeffding) If C is any n-copula, then

max{0, x1 + x2 + . . . + xn − n + 1} ≤ C(x) ≤ min{x1, x2, . . . , xn} (26)

for every x ∈ 〈0, 1〉n.

Theorem 3.4. The basic bounds of Fréchet class Fn(∅) are just the Fréchet–Hoeffding
bounds.

P r o o f . In our case, S = ∅, ∆S consist of the empty set and all singletons under [n]
and the condition (25) takes the form

α[n] ≥ 0 & (∀ν ∈ P([n])\{[n]}) :
∑
j∈ν

α{j} ≥ (|ν| − 1) α∅ (27)

because of the identities (6). First, we show that the set B′ = {β1′, . . . , βn′, γ1′, . . . ,
γn′, δ′, ε′} is a basis of the cone C′S while the ∅-, singleton and [n]-components of its
members are

βi
ζ =

{
1 for ζ = {i}
0 otherwise , γi

ζ =
{

0 for ζ = {i} or ζ = [n]
1 otherwise, , (28)

δζ =

 n− 1 for ζ = ∅
n− 2 for |ζ| = 1
0 for ζ = [n]

, εζ =
{

0 for ζ = ∅ or |ζ| = 1
1 for ζ = [n]. .
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It is obvious that each vector of the set B′ satisfies the condition (27) and thus is mem-
ber of C′S . Now we are going to demonstrate that every vector α′ = (αζ)

T
ζ∈∆S∪{[n]} ∈ C′S

is a non-negative linear combination α′ = b1β
1′+ . . .+ bnβn′+ c1γ

1′+ . . .+ cnγn′+
dδ′ + eε′ of elements of B′. In addition, a combination with natural coefficients can be
found if all components of α′ are natural.

Any such combination must have e = α[n] because the only vector from B′ that
is nonzero in the [n]-component is ε. When investigating the combination, consider
simplifications β′ = b1β

1′+ . . .+ bnβn′ and γ′ = c1γ
1′ + . . . + cnγn′ with components

βζ =
{

bj for ζ = {j}
0 otherwise and γζ =


∑n

i=1 ci for ζ = ∅∑n
i=1 ci − cj for ζ = {j}

0 for ζ = [n]
. (29)

We distinguish two cases.

I. Let
∑n

i=1 α{i} ≤ (n−1)α∅. Then the other combination coefficients can be chosen
as

bj = 0, cj =
n∑

i=1

α{i} − α{j} − (n− 2)α∅ for j ∈ [n]

and d = (n− 1)α∅ −
n∑

i=1

α{i}

(all are non-negative on account of (27) and the assumption of this case) as b1β
1′+

. . .+ bnβn′+ c1γ
1′+ . . .+ cnγn′+ dδ′ + eε′ is equal to

0 +
n∑

j=1

(
n∑

i=1

α{i} − α{j} − (n− 2)α∅

)

+

(
(n− 1)α∅ −

n∑
i=1

α{i}

)
(n− 1) + 0 = α∅ in the ∅-component,

0 +
n∑

k=1

(
n∑

i=1

α{i} − α{k} − (n− 2)α∅

)
−

(
n∑

i=1

α{i} − α{j} − (n− 2)α∅

)

+

(
(n− 1)α∅ −

n∑
i=1

α{i}

)
(n− 2) + 0 = α{j} in the {j}-component,

0 + 0 + 0 + α[n] = α[n] in the [n]-component,

using simplifications (29).

II. Let
∑n

i=1 α{i} > (n − 1)α∅. There exists a disjoint union κ ∪ {k} ∪ λ = [n] such
that min{α∅, α{k}} ≥ α{j} for all j ∈ κ and max{α∅, α{k}} ≤ α{j} for all j ∈ λ.
We also accept emptiness of κ or λ. Appropriate coefficients are

bj = 0, cj = α∅ − α{j} for j ∈ κ,

bk =
∑

i∈κ∪{k}

α{i} − |κ|α∅, ck =
∑
i∈κ

α{i} − (|κ| − 1)α∅,

bj = α{j} − α∅, cj = 0 for j ∈ λ
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and d = 0. Note that bj − cj = α{j} − α∅ for each j ∈ [n]. Consequently, b1β
1′+

. . .+ bnβn′+ c1γ
1′+ . . .+ cnγn′+ dδ′ + eε′ is equal to

0 +
∑
i∈κ

(
α∅ − α{i}

)
+
∑
i∈κ

α{i} − (|κ| − 1)α∅ + 0 + 0 = α∅

in the ∅-component,

bj +
∑
i∈κ

(
α∅ − α{i}

)
+
∑
i∈κ

α{i} − (|κ| − 1)α∅ − cj + 0 + 0 = α∅+

+α{j} − α∅ = α{j} in the {j}-component,
0 + 0 + 0 + α[n] = α[n] in the [n]-component.

In the next few lines we will show that that B′ is a minimal set of generators of the
cone C′S , i. e. none of its vector can be expressed as a linear combination of the others.

Because ε′ is orthogonal to the other vectors of the set B′, ε′ cannot be expressed as
a linear combination of the others and also may not appear with positive coefficient in
their expression.

Expression of βj′ using the other generators fails because all its components except
one are zero, what would be broken by any positive multiple of another vector from B′.

Since the ∅-component of γj′ is nonzero, its expression would have to contain some
of the vectors δ′ or γi′ for i 6= j. But each of them violates zero in the {j}-component
of γj′.

Finally, when

δ′ = b1β
1′ + . . . + bnβn′ + c1γ

1′ + . . . + cnγn′ (30)

for some non-negative coefficients b1, . . . , bn, c1, . . . , cn then n−1 = c1+. . .+cn in the ∅-
components of vectors on both sides of (30). Thus, the sum of all singleton components
of the combination on the right side of (30) is at least (c1 + . . . + cn) (n− 1) = (n− 1)2

according to (29). But the sum of all singleton components of δ′ is n(n − 2), which is
less than (n− 1)2.

The basis of the corresponding cone CS is BS = {β1, . . . , βn, γ1, . . . , γn, δ, ε}. For
ζ ∈ P([n])\ (∆S ∪ {[n]}), the ζ-components of its members are

βi
ζ =

∑
j∈ζ

βi
{j} − (|ζ| − 1) βi

∅ =
{

1 for i ∈ ζ
0 otherwise ,

γi
ζ =

∑
j∈ζ

γi
{j} − (|ζ| − 1) γi

∅ =
{

0 for i ∈ ζ
1 otherwise ,

δζ =
∑
j∈ζ

δi
{j} − (|ζ| − 1) δi

∅ = n− |ζ| − 1, εζ = 0

by (21). For the full definition of these vectors add the equations in (28).
We get the coefficients β̄

1
, . . . , β̄

n
, γ̄1, . . . , γ̄n, δ̄, ε̄ from inequalities of type (16) and

the inequalities themselves by multiplying the members of the base BS by the matrix
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G[n] on the right, which yields

β̄j
ζ =

 1 for ζ = {j}
−1 for ζ = [n]

0 otherwise
, xj − C̃(x) ≥ 0,

γ̄j
ζ =

 1 for ζ = ∅
−1 for ζ = {j}

0 otherwise
, 1− xj ≥ 0,

δ̄ζ =


n− 1 for ζ = ∅
−1 for |ζ| = 1

1 for ζ = [n]
0 otherwise

, n− 1−
n∑

i=1

xi + C̃(x) ≥ 0,

ε̄ζ =
{

1 for ζ = [n]
0 otherwise , C̃(x) ≥ 0.

So, BL = {δ, ε} with bL(x) = max{−n+1+
∑n

i=1 xi, 0} and BU = {β1, . . . ,βn} with
bU (x) = min{x1, x2, . . . , xn}. �

Let S1, S2 be subsets of P ([n]) such that ∆S1 ⊆ ∆S2. Then the basic bounds of
Fn({Cυ; υ ∈ S2}) are narrower than or equal to the basic bounds of Fn({Cυ; υ ∈ S1})
as the system (15) for S = S1 contains all equations of the system for S = S2. So, the
Fréchet–Hoeffding bounds are the widest in this hierarchy.

4. CONCLUSION

In this article, we develop understanding of algebraic bounds of general Fréchet classes,
initiated by paper [7]. The basic bounds, narrowing the Fréchet–Hoeffding bounds of a
Fréchet class, can be starting point for constructions of more accurate boundaries using
analytical methods given by [4] and mentioned, e. g., in [7].

Several issues still arises from this text. It is questionable whether the fourth condition
of Theorem 2.4 can be concluded from the previous three formulated in (20).

We have demonstrated a use of the tool from Theorem 3.4 for an explicit expression
of the basic bounds of simple Fréchet classes over ∅. It would be interesting to test the
efficiency of the method for classes over more complex sets {Cυ; υ ∈ S}.
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