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ADMISSIBLE INVARIANT ESTIMATORS
IN A LINEAR MODEL

Czesław Stępniak

Let y be observation vector in the usual linear model with expectation Aβ and covariance
matrix known up to a multiplicative scalar, possibly singular. A linear statistic aT y is called
invariant estimator for a parametric function φ = cT β if its MSE depends on β only through
φ. It is shown that aT y is admissible invariant for φ, if and only if, it is a BLUE of φ, in the
case when φ is estimable with zero variance, and it is of the form kbφ, where k ∈ 〈0, 1〉 and bφ
is an arbitrary BLUE, otherwise. This result is used in the one- and two-way ANOVA models.
Our paper is self-contained and accessible, also for non-specialists.
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1. BACKGROUND

From real point of view, any observation vector y in a statistical experiment (or model)
may be perceived as a deformation of a signal β. This deformation involves a determin-
istic component, say f(β), and a random one, say e, treated as a noise or error. In a
linear model this deterministic component takes the form of linear transformation, say
Aβ. Usually a linear form cT β, of the signal, is estimated by a linear form dT y, of the
observation.
A class of potential estimators is ordered by a preference rule and it may be reduced

by some initial conditions. The preference rule is usually induced by the Mean Squared
Error while the most popular initial conditions include unbiasedeness, invariance and
admissibility.
Earlier results on admissibility in the context of linear model relate to the unbi-

ased estimators. Cohen ([4, 5]), Rao [19] and Stępniak [21] went beyond this classical
framework. Further results in this area were given, among others, by LaMotte [14],
Klonecki [11], Klonecki and Zontek [12], Baksalary and Markiewicz ([1, 2, 3]), Groß and
Markiewicz [8] and Stępniak [24]. They were based on the Loewner order of nonnegative
definite matrices (see, e. g., Stępniak [22], or Groß ([6, 7])).
Subsequent works by Stępniak [23], Zontek [29], LaMotte [15] and Synówka-Bejenka

and Zontek [28] introduced a new tool in the problem of admissibility. It is based on the
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limits of the unique locally best linear estimators. In this way one can use additional
information on the location of the unknown parameters.
With no doubt the fundamental results on admissibility in linear estimation were

obtained by Cohen ([4] and [5]). The first work presents a geometric characterization
of the set of all admissible estimators for a scalar parametric function in a simple linear
model with nonsingular covariance matrix. This result has been modified in Rao [19]
and Stępniak [21] for the general linear model. Its application is, however, limited by
the fact that not all admissible estimators have good global properties. Thus we restrict
ourselves to such estimators whose Mean Squared Error is invariant with respect to the
nuisance parameters.
This paper completes results in this area. Auxiliary results are collected in Sections 2,

which may serve as a good introduction to linear models. The main result, presented
in Section 3, is used to the classical one- and two-way balanced, fixed, ANOVA models
with restraints on the parameters. Such restraints lead to singular covariance matrix.
The paper is self-contained and accessible, also for non-specialists..

2. DEFINITIONS, NOTATION AND KNOWN RESULTS

For clarity, the symbols of matrices are emphasized by boldface; capital for many columns
and lower-case for a single one, i. e. vector. The set of all n-vectors is denoted by Rn.
For deterministic vectors we use letters a, b, c, d, g and x (with possible indices) and
for random ones: y, u, z and e. Greek letters stand for parameters.
Given a matrix M, of size n× p, its range and kernel is defined, respectively, by

R(M) = {a ∈ Rn : a = Mc for some c ∈ Rp}

and
N (M) = {c ∈ Rp : Mc = 0}.

It is well known from a course in linear algebra (see, for instance, Halmos [9]) that
any vector a ∈ Rn may be presented in the form

a = a1 + a2, (1)

where a1 ∈ R(M), a2 ∈ N (MT ) and a1 and a2 are orthogonal in the sense aT
1 a2 = 0.

Moreover,
R(MMT ) = R(M). (2)

Let P = PM be a square matrix satisfying the condition

Pa =
{

a, if a ∈ R(M)
0 if a ∈ N (MT ). (3)

By (1) such a matrix is unique. This matrix is called the orthogonal projector from Rn

onto R(M).
Note that P depends on M only through R(M). Let b1,b2, . . . ,br be a basis in

R(M). It is easy to verify that

PB = B(BT B)−1BT , where B = [b1,b2, . . . ,br]. (4)
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Let y be a random vector in Rn with expectation Aβ and covariance matrix σ2V,
where A is a known matrix of size n× p, V is a known symmetric nonnegative definite
matrix of order n, while β = (β1, . . . , βp)T is an unknown parameter and σ2 is a positive
scalar (known or not). Formally, we assume that (β,σ2) is running over the Cartesian
product Rp × S, where S is a not empty subset of (0,∞). Such a system of conditions
will be called a linear model and will be symbolically written as L(Aβ,[V]) (Notation [·]
is adapted from [17].) The fact that y is observation vector in the model will be shortly
expressed in the form y ∼L(Aβ,[V]).
In this paper we are interested in estimation of a parametric function ϕ(β) = cT β,

for a given c ∈ Rp, by linear statistic of the form dT y. An estimator dT y is said to
be unbiased for ϕ if E(dT y) = ϕ(β) for all β ∈ Rp. If such estimator exists then the
parametric function ϕ is said to be estimable. In the context of the model L(Aβ,[V])
we have E(dT y) = dT Aβ. Thus, by definition of range, ϕ = cT β is estimable, if and
only if, c ∈ R(AT ). In consequence, any unbiased estimator of cT β may be presented
in the form dT y, where d is any solution of the equation AT x = c.
It is well known that for any estimable ϕ in L(Aβ,[V]) there exists a linear unbiased

estimator with minimal variance, called a Best Linear Unbiased Estimator (BLUE), say
bT y. This estimator is characterized by the following theorem.

Theorem 1. (Lehmann-Scheffé [16], Theorem 5.3; cf. also [27], Theorem 1)
Let D = {f(y)} be a class of potential estimators. If D constitutes a linear space then
a member f1(y) of this class is a minimum variance unbiased estimator of its expectation
in D, if and only if, Cov(f1(y), f0(y)) = 0 for any f0 ∈ D such that E(f0(x)) = 0 for
all β.

Thus, as a corollary, we get

Theorem 2. (Zyskind [30], Theorem 3)
In the context of the model L(Aβ,[V]) a linear functional d′y is a BLUE of its expec-
tation, if and only if, Vd ∈ R(A).

In particular, if V = In, then dT y is a BLUE (of its expectation ϕ = dT Aβ), if and
only if, d ∈ R(A). Such estimator is called the the Least Squares Estimator (LSE) for
ϕ.
The question ”When does the BLUE coincide with the LSE for all estimable para-

metric functions?” is very important and it is still undertaken by many authors. The
first simple answer to this question is due to Kruskal ([13], Theorems 1 and 3). Caution:
There are two theorems with the number 3 in [13].

Theorem 3. (Kruskal [13], Theorem 1 and 3 (p. 74))
Model L(Aβ,[V]) satisfies the desired condition if an only if

VR(A) ⊆ R(A), (5)

i. e. when R(A) is an invariant subspace of V (treated as an operator on Rn).

This theorem is a direct consequence of Theorem 2 and the fact that the set of all
LSE’s in the model L(Aβ,[V]) is of the form {dT y : d ∈ R(A)}.
We will prove
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Lemma 4. The condition (5) may be expressed in the matrix form

VPA = PAV. (6)

P r o o f . Let us rewrite the left side of (5) in the form

VR(A) = {a ∈ Rn : a = VAc for some c ∈ Rp},

and next, by (3), as {VPAb : b ∈ Rn}. Thus (5) is equivalent to (I−PA)VPAb = 0
for all b ∈ Rn. The last one is satisfied, if and only if, VPA is symmetric, i. e. when
(6) holds. �

The problem posed by Kruskal may be restricted to a given estimable ϕ, and namely:
when the LSE of φ coincides with its BLUE? Some necessary and sufficient conditions
may be found in ([25], Theorem 2).
By Gauss–Markov theorem (cf. [20], Theorem 2, p.14, or [26], Theorem 4.1 with its

proof in the spirit of this section), the LSE for estimable ϕ = cT β is unique and is given
by cT β̂, where β̂ is any solution of the normal equation

AT Ax = AT y. (7)

(By (2) this equation is consistent.)
However, the BLUE for φ may not be unique. It follows from Theorem 1 that any

BLUE for ϕ may be presented in the form bT y, where b is a member of the class

B ={b0 + x : bT
0 y is an arbitrary BLUE for ϕ, AT x = 0 and Vx = 0}. (8)

In particular we get the following corollary.

Corollary 5. The BLUE for an estimable parametric function ϕ = cT β in the model
L(Aβ,[V]) is unique, if and only if, the equation[

AT

V

]
x = 0 (9)

has a unique solution x = 0.

Now let us go to estimation of a parametric function ϕ = cT β by a linear (not
necessarily unbiased) statistic dT y with respect to the Mean Squared Error (MSE),
defined by the formula

MSE(dT y, cT β) = E(dT y − cT β)2.

An estimator dT y is said to be admissible if there is no other estimator, say dT
0 y,

such thatMSE(dT
0 y, cT β) ≤ MSE(dT y, cT β) for all β and σ with the strict inequality

for some β0 and σ0.
Cohen [4] considered a linear model L(Aβ,[V]) with A = I and nonsingular V. For

simplicity such model will be denoted by L(β,[V]). In this case every linear function
ϕ = cT β is estimable. Cohen proved the following theorem.
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Theorem 6. Let y be observation vector in the model L(β,[V]) with nonsingular V.
Then a linear statistic dT y is admissible estimator of a parametric function ϕ = cT β, if
and only if, d belongs to the ellipsoid(

d−c
2

)T

V
(
d−c

2

)
≤ cT Vc

4
. (10)

The first characterization of admissible estimators for an estimable parametric func-
tion ϕ = cT β in a linear model L(Aβ,[V]) with possibly singular matrix V, presented
in ([19], Section 4, and its correction), seems not be clear. A more precise result of this
kind (see [21]) may be presented as follows.

Theorem 7. Let y be observation vector in a linear model L(Aβ,[V]) and let ϕ = cT β
be estimable in this model. Then a linear statistic dT y is admissible for ϕ, if and only
if,
(i) Vd ∈ R(A),
(ii) dT Vb ≥ dT Vd, and,
(iii) either AT (d− b) = 0, or V(d− b) 6= 0,
where bT y is a BLUE of ϕ.

The following remarks throw some light on the conditions (i)-(iii).

Remark 8. Under assumption of Theorem 6 we get b = c and the condition (ii) is
equivalent to (10).

Remark 9. The condition (i) does not depend on ϕ, while (ii) and (iii) do.

Remark 10. The class of admissible linear estimators for ϕ, presented by Theorem
7, does not depend on the choice of its BLUE. To verify this we only need to use the
representation (8).

One can ask whether the set of the conditions (i)-(iii) is minimal in the sense that
neither of them is implied by the others. We will show by examples that the answer is
YES.

Example 11. Condition (i) is not implied by (ii) and (iii).
Consider model y ∼L(µ1n, [In]), where 1n means the column of n ones and µ is a

scalar. If ϕ = µ then bT y with b = 1
n1n is a BLUE of φ and var(bT y) = 1

n . Let us set
d = b

2 +a, where aT 1n = 0 and 0 < aT a < 1
4n . Then (ii) and (iii) are met but (i) is not.

Example 12. Condition (ii) is not implied by (i) and (iii).
Consider model y ∼L(β, [In]). In this case b = c and the condition (i) is met for

arbitrary d. By setting d = 2c 6= 0, we get V(d − b) 6= 0 and dT Vb < dT Vd. Thus
(i) and (iii) are satisfied but (ii) is not.
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Example 13. Condition (iii) is not implied by (i) and (ii).

Consider model y ∼L

(
β,

[0@ 1 0
0 0

1A
])
. In this case the condition (i) is always met

and b = c. By setting c = [1, 0]T and d = [1, 1]T , we get dT Vb = dT Vd, AT (d−b) 6= 0
and V(d− b) = 0. Thus (i) and (ii) are met but (iii) is not.

Let us end this section by the following remark.

Remark 14. Ip, Wong and Liu [10] claim that any linear form defined by their formula
(4.2) is both linearly sufficient and admissible for KB. Holding the notation used in [10]
let us put X = Σ = K = 1 and V = 0. Then the trivial statistic 0Y satisfy (4.2) but is
neither linearly sufficient nor admissible for KB because is dominated by Y.

3. MAIN RESULT AND ITS APPLICATIONS

We mention that the class of admissible linear estimators presented in Theorems 6 and
7 is very large, usually represented by a multidimensional set in Rn. This set may be
reasonably restricted by an invariance condition imposed on the Mean Squared Error of
potential estimators.

Definition 15. We shall say that a linear functional dT y is an invariant estimator for
a parametric function ϕ(β) = cT β in a linear model y ∼L(Aβ,[V]) if its MSE depends
on β only through ϕ(β), and totally invariant, if the MSE does not depend on β.

From representation

MSE(dT y, cT β) = σdT Vd + (dT Aβ − cT β)2 (11)

we derive the following corollaries.

Corollary 16. If ϕ is estimable then ϕ̂ is an totally invariant for ϕ if and only if it is
unbiased.

Corollary 17. If ϕ is estimable and ϕ̂ is an unbiased estimator for ϕ, then kϕ̂ is in-
variant for arbitrary k ∈ R.

We shall prove

Theorem 18. If ϕ = cT β is estimable in the model y ∼L(Aβ,[V]) then dT y is invariant
for ϕ, if and only if, it may be presented in the form kϕ̂, where ϕ̂ is unbiased for ϕ and
k ∈ R.

P r o o f . By Corollary 17 it remains to show the necessity of the condition.
Let cT β be estimable and let a1,a2, . . . ,ar be an orthonormal basis in R(AT ) such

that a1 = c
||c|| . We shall use the reparametrization θ = Tβ, where

T =

aT
1

. . .
aT

r

 .
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In this reparametrization model L(β,[V]) may be written in the form L(Gθ,[V]), where
G = ATT , θ1 = ϕ

||c|| , and the parameter θ = ( θ1, θ2, . . . , θr)′ is running over Rr. In
consequence, the second component in (11) may be presented in the form[

r∑
i=1

(dT gi)θi − ‖c‖ θ1

]2

,

where gi denotes the i−th column of the matrix G. Since the first component in (11)
is independent of β, dT y is invariant for ϕ, if and only if dT gi = 0 for i = 2, . . . , r, i. e.
when desired condition is met. �

Now we are ready to state the main result in this section.

Theorem 19. If ϕ = cT β is estimable in the model y ∼L(Aβ,[V]) then a linear form
dT y is admissible among invariant estimators for ϕ, if and only if, it coincides with its
BLUE, in the case when φ is estimable with zero variance, and dT y is of the form kϕ̂ ,
where ϕ̂ is a BLUE and k ∈ 〈0, 1〉, otherwise.

P r o o f . If var(ϕ̂) = 0 then the MSE of ϕ̂ is zero and hence it is minimal among all
estimators. Now suppose that var(ϕ̂) = v > 0. By representation (11), Theorem 18 and
definition of BLUE it follows that any admissible estimator dT y may be presented in
the form kz, where z is the BLUE of ϕ. In consequence, kz is admissible, if and only if,
it is admissible in the scalar model z∼L(ϕ,[v]). Now, by condition (ii) in Theorem 7 we
get the desired result. �

Let us recall that the class of all BLUEs for ϕ is presented by the formula (8).
Now we shall use Theorem 19 in the Analysis of Variance (ANOVA) with one- and

two-way balanced classification and so called fixed (i. e. deterministic) effects.

3.1. One-way ANOVA with restraint

Let us consider the model with t treatments, each with q replications. Such a model
may be presented in the form

yij = µ + αi + eij , i = 1, . . . , t; j = 1, . . . , q, (12)

where µ is the general mean (or intercept), αi is the effect of the ith treatment, while
eij , i = 1, . . . , t; j = 1, . . . , q, are not correlated experimental errors with mean zero and
(known or unknown) common variance σ. The observation vector y = (y11, . . . , y1q; . . . ;
yt1, . . . ytq)T may be concisely written in the form

y = Aβ + e, (13)

where
A =

[
1n It ⊗ 1q

]
β = (µ, α1, . . . , αt)T
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and
e = (e11, . . . , e1q; . . . ; et1, . . . etq)T ,

while n = tq and ⊗ means the Kronecker product.
We note that A is a matrix of size n× (t+1) with rank(A) = t and, therefore, of not

full column rank. In consequence, the parameters µ, α1, . . . , αt are not identifiable by the
model (12) in the sense that Ey is not uniquely represented by them. The identifiability
may be satisfied by an additional condition, for instance of the form

∑t
i=1 αi = 0, called

restraint. The model (13) together with this restraint may be presented in the form

u ∼L(Bβ,[V]), (14)

where

u =
[
y
0

]
and

B =
[
1n It ⊗ 1q

0 1T
t

]
with singular

V =
[
In 0n

0T
n 0

]
.

Since rank(B) = t+1, any parametric function ϕ = c0µ+
∑t

i=1 ciαi in the model (14)
is estimable. We are interested in admissible invariant estimators for ϕ. By Theorem
19 this problem reduces to the BLUE’s for the parameters µ, α1, . . . , αt.
We shall start from the Least Squares Estimator for the vector β = (µ, α1, . . . , αt)T .

The classical way leads by solving the normal equation

BT Bβ = BT u

and, in consequence, we get
β̂ = (BT B)−1BT u. (15)

To this aim we only need to invert the patterned matrix

BT B =
[

n q1T
t

q1t qIt + 1t1T
t

]
.

One can easy verify that

(BT B)−1 =
[ 1

t + 1
n − 1

t2 1
T
t

− 1
t2 1t

1
q It + ( 1

t2 −
1
n )1t1T

t

]
.

In consequence we get

(BT B)−1BT =
[ 1

n1T
n − 1

t
1
q It ⊗ 1T

q − 1
n1t1T

n
1
t 1t

]
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and the LSE of the parameter vector β = (µ, α1, . . . , αt)T takes the form

β̂ =


µ̂
α̂1

. . .
α̂t

 =


1
n

∑
i,j yij

1
q

∑
j y1j − 1

n

∑
i,j yij

. . .
1
q

∑
j ytj − 1

n

∑
i,j yij

 . (16)

Remark 20. A similar result has been obtained in Scheffé ([20], chapter 3) for one-way
classification without intercept.

In order to ensure that the BLUE of β is unique and it coincides with its LSE we
only need to verify the condition (6), which is actually in the form PBV = VPB, and
that the equation [

BT

V

]
x = 0

has the unique solution of x = 0. By formula (4)

PB =
[ 1

q diag(1q1T
q , . . . ,1q1T

q ) 0n

0T
n 1

]
and the desired conditions are met.
Now, by Theorem 3, Lemma 4 and Theorem 19, we get the following

Conclusion 21. A linear form aT y is admissible invariant estimator for a parametric
function ϕ = c0µ +

∑t
i=1 ciαi in the model (14), if and only if, aT y coincides with the

LSE ϕ̂ = c0µ̂+
∑t

i=1 ciα̂i of φ, in the case when c1 = c2 = . . . = ct, and aT y = kϕ̂ with
k ∈ 〈0, 1〉, otherwise.

3.2. Additive two-way ANOVA with restraints

Suppose n = tq experimental units are subject to two independent classifications with t
and q subclasses, respectively. Then the observation yij , corresponding to the ith sub-
class in the first classification and the jth subclass in the second one, may be presented
in the form

yij = µ + αi + θj + eij , (17)

where αi and θj , i = 1, . . . , t; j = 1, . . . , q are the effects of the ith and jth subclass in
the respective classification. As in Section 5 we shall assume that eij , i = 1, . . . , t; j =
1, . . . , q are not correlated experimental errors with mean zero and the common variance
σ. The model (17) may be presented in the concise form

y = Aβ + e, (18)

where
A = [1n; It ⊗ 1q;1t ⊗ Iq]

and
β = (µ;α1, . . . , αt; θ1, . . . θq)T .
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For the same reason as in one-way ANOVA we shall use additional restraints
∑t

i=1 αi =∑q
j=1 βj = 0 on the parameters. Now the model (18) with the restraints may be pre-
sented in the form

z ∼L(Bβ,[V]), (19)

where

z =

y0
0



B =

1n It ⊗ 1q 1t ⊗ Iq

0 1T
t 0T

q

0 0T
t 1T

q


and

V =
[

In 0n×2

02×n 02×2

]
.

We are interested in admissible invariant estimators for ϕ = c0µ +
∑t

i=1 ciαi +∑q
j=1 djθj . By Theorem 19 this problem reduces to the BLUE’s for the parameters

µ, α1, . . . , αt; θ1, . . . , θq.
It is easy to verify that

(BT B)−1 =

 1
t2 + 1

q2 + 1
n − 1

t2 1
T
t − 1

q2 1T
q

− 1
t2 1t

1
q It + ( 1

t2 −
1
n )1t1T

t 0
− 1

q2 1q 0T 1
t Iq + ( 1

q2 − 1
n )1q1T

q

 .
In consequence the LSE of the parametric vector β takes the form

β̂ =



µ̂
α̂1

. . .
α̂t

θ̂1

. . .

θ̂q


=



1
n

∑
i,j yij

1
q

∑
j y1j − 1

n

∑
i,j yij

. . .
1
q

∑
j ypj − 1

n

∑
i,j yij

1
t

∑
i yi1 − 1

n

∑
i,j yij

. . .
1
t

∑
i yiq − 1

n

∑
i,j yij


. (20)

In the same way as in one-way ANOVA we get the following

Conclusion 22. A linear form aT y is admissible invariant estimator for a parametric
function ϕ = c0µ+

∑t
i=1 ciαi+

∑q
j=1 djθj in the model (19), if and only if, aT y coincides

with the LSE ϕ̂ = c0µ̂ +
∑t

i=1 ciα̂i +
∑q

j=1 dj θ̂j of φ, in the case when c0 = 0, c1 =
c2 = . . . = ct and d1 = d2 = . . . = dq, and aT y = kϕ̂ with k ∈ 〈0, 1〉, otherwise.
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