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VARIATIONS ON UNDIRECTED GRAPHICAL MODELS
AND THEIR RELATIONSHIPS

David Heckerman, Christopher Meek and Thomas S. Richardson

We compare alternative definitions of undirected graphical models for discrete, finite vari-
ables. Lauritzen [7] provides several definitions of such models and describes their relationships.
He shows that the definitions agree only when joint distributions represented by the models
are limited to strictly positive distributions. Heckerman et al. [6], in their paper on depen-
dency networks, describe another definition of undirected graphical models for strictly positive
distributions. They show that this definition agrees with those of Lauritzen [7] again when
distributions are strictly positive. In this paper, we extend the definition of Heckerman et al.
[6] to arbitrary distributions and show how this definition relates to those of Lauritzen [7] in
the general case.
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1. INTRODUCTION

Lauritzen [7, Ch.3] provides alternative definitions of undirected models for discrete
variables with finite state spaces. In particular, given an undirected graph G, he defines
the following families of distributions:

• MP (G): The family of distributions satisfying the pairwise Markov property rel-
ative to G,

• ML(G): The family of distributions satisfying the local Markov property relative
to G,

• MG(G): The family of distributions satisfying the global Markov property relative
to G,

• MF (G): The family of distributions that can be written as a product of potentials
over the maximal cliques in the graph,

• ME(G): The family of distributions that can be written as a limit of strictly
positive distributions in MF (G).
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In addition, he defines families of distributions limited to strictly positive distributions
among the first four families just listed, denoted M+

P (G), M+
L(G), M+

G(G), and M+
F (G),

respectively. He shows that, whereas the strictly positive families are equal (and denoted
M+(G)), the general families are not:

M+(G) ⊂MF (G) ⊂ME(G) ⊂MG(G) ⊂ML(G) ⊂MP (G).

Lauritzen shows that each inclusion is strict by way of examples. A summary of this
work is shown in the Venn diagram in Figure 1a.

In this paper, we contrast these model definitions with the definition via dependency
networks introduced by Heckerman et al. [6]. Dependency networks are a natural exten-
sion of initial efforts to formalize undirected graphical models (a.k.a. Markov networks)
and spatial statistical systems. As is discussed in Besag [4], several researchers including
Lévy [8], Bartlett [3, Section 2.2], and Brooks [5] considered lattice systems where each
variable X depends only on its nearest neighbors neX , and quantified the dependencies
within these systems using the conditional probability distributions p(x|neX). A depen-
dency network uses such distributions in conjunction with a single-site Gibbs sampler
to define a joint distribution. Arnold et al. [2] give essentially the same definition under
the name conditionally specified distributions. Yang et al. [12] contains another more
recent application of the same idea.

Heckerman et al. [6] show that their definition, limited to strictly positive distribu-
tions, coincides with that of M+(G). We extend their definition to include arbitrary
distributions. We call the resulting set of distributions the conditionally specified undi-
rected graphical model associated with G and denote it by MC(G). We provide examples
that demonstrate the relationships among MC(G), MP (G), ML(G), MG(G), MF (G),
and ME(G). A summary of our work is shown in Figure 1b.

2. NOTATION AND DEFINITIONS

In this section, we review some basic graph-theoretic definitions and notation and define
conditionally specified graphical models.

We use G = (V,E) to denote an undirected graph where V = {A,B,C, . . .} denotes
the set of vertices and E is the set of edges. We will denote an edge between two vertices
A and B by A − B and denote the set of neighbors of a vertex A by neG(A). In order
to associate a distribution with a graph we associate a random variable XA with each
vertex A. We will let XA denote the state-space for XA. We assume that each variable
takes a finite set of possible values. We use xV to denote one such value. We denote
the set of variables corresponding to a set of vertices C by XC with state-space XC and
denote the set of all variables by X = XV.

As mentioned, our definition of a conditionally specified undirected graphical model is
based on the definition of dependency network given by Heckerman et al. [6]. Roughly, a
dependency network for XV consists of a graph G and a set of strictly positive conditional
distributions, one for each vertex V , conditioned on the random variables corresponding
to its neighbors in the graph.
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Fig. 1. (a) Relationships among definitions of undirected graphical

models as described by Lauritzen [7]. (b) Additional relationships

among the definitions in (a) and MC(G). Labeled points correspond

to example distributions demonstrating the non-emptiness of cells in

the Venn diagram. Example distributions in Lauritzen [7] and this

note are prefixed with “L” and “D”, respectively.

More formally a dependency network is defined as follows:
A Markov kernel KV (xV | xne(V )) with conditional domain NV is a function:

KV : XV ×NV → [0, 1]

with NV ⊆ Xne(V ) that satisfies:

1 =
∑

xV ∈XV

KV (xV | x∗ne(V )) for all x∗ne(V ) ∈ NV .
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A dependency network specification associated with graph G is a set of Markov kernels
and conditional domain pairs, one for each vertex:

{(KV (xV | xne(V )),NV ) | V ∈ V}.

We also define:

N ≡
⋂

V ∈V

{xV | xV = (xne(V ),xV\ne(V )) ∈ NV ×XV\ne(V )}.

Thus N ⊆ XV is the subset of vectors xV ∈ XV such that the subvectors xne(V ) ∈ NV

for every V .
A dependency network will be said to be consistent if there exists a distribution

P (xV) that has support only on a (possibly strict) subset of N , so:

for every xV ∈ XV, P (xV) > 0 ⇒ xV ∈ N , (1)

and, in addition,

for all V ∈ V and xV ∈ N , P (xV\{V }) > 0 ⇒ P (xV | xV\{V }) = KV (xV | xne(V )).
(2)

Note that it follows from (2) that any such distribution P (xV) obeys the local Markov
property for G and hence P (xV) ∈ML(G). Further note that the requirement (1) implies
that for all xV ∈ N , V ∈ V, and x∗V ∈ XV , if P (xV\{V }) > 0 and P (x∗V | xV\{V }) > 0
then (x∗V ,xV\{V }) ∈ N .

Given a distribution P (xV) obeying the local Markov property for G, there is a natural
dependency network specification resulting from P (xV) given by defining for each V ∈V:

NV ≡ {xne(V ) | P (xne(V )) > 0} ⊆ Xne(V ), (3)

KV (xV | xne(V )) ≡ P (xV | xne(V )).

It follows from the definitions that the support of P (xV) is contained in the resulting
set N . That is, condition (1) is satisfied. The following is an immediate consequence:

Proposition 2.1. Given a distribution P (xV) that obeys the local Markov property,
the dependency network specification resulting from P (xV) is consistent.

However, though the dependency network specification given by a distribution P (XV)
(obeying the local Markov property for G) will be consistent by definition, there may
exist another distribution P ∗(xV) 6= P (xV) satisfying (1) and (2). This leads to the
following:

A distribution P (xV) obeying the local Markov property for G will be said to be in the
conditionally specified model MC(G) if P (xV) is the unique consistent distribution that
has the natural dependency network specification resulting from P (xV). Equivalently,
P (xV) ∈MC(G) if P (xV) obeys the local Markov property for G and there is no other
distribution P ∗(xV) such that for all V , P ∗(xV | xV\{V }) = P (xV | xV\{V }).



Variations on undirected graphical models and their relationships 367

We will also associate with a dependency network specification a set of single-variable
Gibbs transition kernels defined on N , one for each vertex V , as follows:

MV (x∗V,xV) = P (xV 7→ x∗V) ≡ I(xV\{V } = x∗V\{V })KV (x∗V | xne(V )),

where I(·) is the indicator function, xV,x∗V ∈ N and MV (xV,x∗V) is a |N | × |N |
transition matrix.

Proposition 2.2. Given a consistent dependency network specification, a distribution
P satisfying (1) and (2), and states xV, x∗V such that P (xV) > 0 and MV (x∗V,xV) > 0
then P (x∗V) > 0, and thus x∗V ∈ N .

Thus given an initial state xV in the support of P (and hence in N ), with probability
one the transition kernel MV takes us to a state x∗V that is also in N .

P r o o f . Suppose otherwise, so that P (x∗V | xV\{V }) > 0, but P (x∗V) = 0. Note that
by definition of MV , x∗V\{V } = xV\{V }. Since P (x∗V) = P (x∗V | xV\{V })P (xV\{V }),
this implies that P (xV\{V }) = 0. However, this is a contradiction since 0 < P (xV) ≤
P (xV\{V }). �

We will consider a two-stage Gibbs sampling scheme whereby a single vertex V ∈
V is picked randomly and then a new state x∗V is obtained from the Markov kernel
MV . We will refer to this as the Gibbs sampler associated with the dependency network
specification. It is not difficult to see that the (multiple-variable) Gibbs transition kernel
for this overall scheme is then:

M ≡ 1
|V|

∑
V ∈V

MV .

Proposition 2.2 shows that given a starting point xV within the support of P (hence
in N ), the Gibbs sampler will only transition to other points within the support of P
(hence in N ).

A distribution µ on N will be said to be a stationary distribution of the Gibbs
sampler if µM = µ. Recall that given a Markov chain on a set N , a state n2 is said to
be accessible from n1, written n1 → n2, if after sufficiently many transitions, there is a
non-zero probability of transitioning from n1 to n2. A state n1 is said to be essential if
for every n2 such that n1 → n2, it also holds that n2 → n1. Lastly a chain is irreducible
if, for any two states n1, n2 ∈ N , it holds that n1 → n2 and n2 → n1.

Lemma 2.3. A consistent dependency network specification resulting from a distribu-
tion P (xV) ∈ML(G) will give rise to a unique stationary distribution if and only if the
Markov chain resulting from the associated Gibbs sampling scheme is irreducible.

P r o o f . The Ergodic Theorem (see e. g. Norris [11, p.53]) states that if a Markov chain
is irreducible then there exists a unique stationary distribution µ(xV) ≡ P (xV) for the
Markov chain given by M .

We now show the converse. First note that by Proposition 2.2, given an initial
starting value in N the Markov chain will remain in N . Since, by construction, every
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state of the chain is essential, if the chain is reducible then N may be decomposed into
disjoint components N 1, . . . ,N p such that the Gibbs sampling scheme is irreducible on
each subset N i. By the Ergodic Theorem, there is a unique stationary distribution with
support N i, call this distribution µi. Note that µiM = µi. However, since µi and µj

have disjoint support (for i 6= j) it follows that, if the Gibbs sampling scheme is not
irreducible, then there will not be a unique stationary distribution. �

In addition we have the following result:

Lemma 2.4. Given a consistent dependency network specification that results in an
irreducible Gibbs sampler with unique stationary distribution µ, it follows that for any
state x∗V such that µ(x∗V) > 0, and any vertex V , µ(xV | x∗ne(V )) = KV (xV | x∗ne(V )).

P r o o f . By consistency there exists a distribution µ satisfying (2). By definition, any
such distribution µ satisfies for all V , µMV = µ, and thus µM = µ. The uniqueness of
the stationary distribution then implies the conclusion. �

This then leads to the following characterization of MC(G):

Theorem 2.5. A distribution P (xV) ∈ ML(G) is also in MC(G) if and only if the
associated Gibbs sampler is irreducible.

P r o o f . (⇐) This follows immediately from Lemmas 2.3 and 2.4.
(⇒) Suppose the Gibbs sampler is reducible, with disjoint components N 1, . . . ,N p,
p > 1. For a given i, consider the distribution P i(xV) ≡ P (xV | N i).

Consider a point x̃V ∈ N i. It follows immediately that P (x̃V,N i) = P (x̃V). Further,
by definition of N i for any x′V ∈ XV , if P (x′V , x̃V\{V }) > 0 then (x′V , x̃V\{V }) ∈ N i.
Consequently, P (x̃V\{V },N i) = P (x̃V\{V }). It then follows that if (xV ,xV\{V }) ∈ N i

then P i(xV | xV\{V }) = P (xV | xV\{V }). By construction of N i, P i(xV) implies
a dependency network specification leading to an irreducible Markov chain. Hence it
follows from (⇐) that P i(xV) ∈MC(G). Thus for all V , and all xV ∈ XV,

P i(xV\{V }) > 0 ⇒ P i(xV | xV\{V }) = P (xV | xV\{V }) = P (xV | xne(V )). (4)

However, since P i(xV) has support on a subset of N i and N i ⊂ N , (4) establishes
that P i(xV) satisfies the original dependency network specification given by P . The
same argument may be carried through for j 6= i, leading to a distribution P j(xV) also
obeying the original specification. However, P i(xV) 6= P j(xV) since the distributions
have disjoint support. Hence P (xV) /∈MC(G). �

It follows from the proof of Theorem 2.5 that a distribution P (xV) ∈ML(G)\MC(G)
is a mixture of two or more distributions in MC(G) with disjoint supports. These
distributions inMC(G) are uniquely determined by the full conditionals P (xV | xV\{V });
it is solely the mixing distribution that is not identified. More formally we have shown
the following:
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Proposition 2.6. If P (xV) ∈ ML(G) \MC(G) then for some k ≥ 2, for every V ∈ V
there exists a partition

XV = X (1)
V ∪̇ · · · ∪̇X (k)

V ,

and there exist distributions P (1)(xV), . . . , P (k)(xV) ∈ MC(G), whereby P (i)(xV) has
support on the Cartesian product X (i)

V ≡
∏

V ∈V X
(i)
V , and there is a distribution P̃ (i)

with support {1, . . . , k} such that

P (xV) =
k∑

i=1

P̃ (i) · P (i)(xV). (5)

Hence P (xV) has support on
⋃k

i=1 X
(i)
V ( XV.

Given a distribution P (xV) we define the Hamming graph for P (xV) to be a graph
H defined as follows:

(1) The vertex set of H corresponds to the set of values xV in the support of P (xV);

(2) There is an edge between the vertices corresponding to two distinct support points
xV, x∗V, if there is a unique V ∈ V such that xV\{V } = x∗V\{V }; thus two support
points are joined by an edge only if they differ in the value they assign to a unique
vertex V .

The Hamming graph H is said to be connected if there is a path from any vertex xV to
any other vertex x∗V .

Theorem 2.7. A distribution P (xV) obeying the local Markov property for G is in
MC(G) if and only if the Hamming graph H for P (xV) is connected.

P r o o f . By construction of the Hamming graph, the Gibbs sampling scheme defined
by M is irreducible if and only if the Hamming graph is connected. The result then
follows from Theorem 2.5. �

Heckerman et al. [6] consider dependency network specifications including those
that are not necessarily consistent. Their motivation for this definition of (general)
dependency networks is that it is both straightforward and computationally efficient to
learn conditional distributions separately and then combine them via Gibbs sampling
to obtain a joint distribution. They note that asymptotically (in sample size), the
conditional distributions will converge to the true conditional distributions and hence
be consistent.

The choice of a single-site Gibbs sampler in our definitions is not arbitrary. The local
Markov property is itself a “single-site” property. As noted above, this property will
be satisfied by any distribution satisfying (2). It also leads to more computationally
efficient inference and to a graphical representation. We can extend the definition of a
consistent dependency network to include k-site Gibbs sampling, but we then require
a k-site version of the local Markov property to provide similar benefits. Namely, we
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say that a joint distribution satisfies the k-order local Markov property relative to G if,
for any pair (A, S) of disjoint subsets of V such that the size of A is at most k and S
separates A from the remaining vertices in G, then XA and XV\(A∪S) are independent
given XS. Note that, when k represents a sufficiently large number of the nodes in graph
G, the k-order local Markov implies the global Markov property. In the remainder of
this paper, we concentrate on the case where k = 1.

3. RELATING THE MODELS

We now examine the relationships between the various families for a given graph G.

3.1. Strictly positive distributions

As mentioned, Lauritzen [7] shows that M+
F (G) = M+

G(G) = M+
L(G) = M+

P (G) ≡
M+(G), and Heckerman et al. [6] show that M+

C(G) = M+(G). Here, we show that
M+

F (G) = M+
E(G) = M+

C(G), where M+
E(G) and M+

C(G) are the families ME(G) and
MC(G), respectively, limited to strictly positive distributions.

Lemma 3.1. M+
E(G) = M+

F (G) = M+
C(G).

P r o o f . From the definition of MF , we know that M+
F (G) ⊆ M+

E(G). Furthermore,
we know that ME(G) is a subset of the set of global Markov distributions MG(G) [7,
p. 42] and M+

F (G) = M+
G(G) [7, p. 34]. From these facts we have M+

F (G) = M+
E(G).

From the definition of MC , we know that M+
C(G) ⊆M+

L(G). Furthermore, the set of
strictly positive pairwise Markov distributions M+

P (G) and M+
G(G) are equal to M+

L(G)
(see, e. g. Lauritzen [7, p. 34]). From the Hammersley–Clifford Theorem, M+

F (G) =
M+

P (G) (see, e. g. Lauritzen [7, p. 36]). Therefore, we have established M+
C(G) ⊆

M+
F (G). It is thus sufficient to prove that M+

F (G) ⊆ M+
C(G). Let P be in M+

F (G).
The factorization of the distribution guarantees that P is in ML(G). Furthermore,
by positivity, the Hamming graph H has vertex set XV and thus is connected. Hence
P ∈MC(G) by Theorem 2.7. �

3.2. ∃G : ML(G) \ (MG(G) ∪MC(G)) 6= ∅

In the remainder of Section 3, we show that certain cells in the Venn diagram of Fig-
ure 1b are not empty. We do so with specific examples. Example distributions given
by Lauritzen [7] are prefixed with the letter “L.” New examples are prefixed with the
letter “D.” We first consider examples from Lauritzen [7], as some of the examples we
introduce are based on them.

An important tool in our constructions will be the characterization of MC(GC) given
in Theorem 2.7. Several of our examples are constructed by adapting previous known
examples so that their Hamming graph is connected. The basic idea is that given a
graph G∗ over a set of variables V∗ and a distribution P ∗(V∗) that is in one of the sets
shown in Figure 1a, we may construct an example that is also in MC(GC) by considering
an extended graph G with vertices V∗ ∪ {T}, such that the induced subgraph on V∗ is
still G∗ and T is adjacent to every vertex in V∗. Finally we let T be a binary variable
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and define P (V) = P (V∗ | T )P (T ) where P (T = t) = 0.5 for t = 0, 1, P (V∗ | T =0) is
the uniform distribution on XV∗ , while P (V∗ | T =1) = P ∗(V∗).

Example 3.5 in Lauritzen [7] illustrates that, relative to some graph, there are distri-
butions that are locally Markov but neither globally Markov nor able to be conditionally
specified.

(L3.5) A distribution P for five variables XU , XW , XX , XY , and XZ where XU and
XZ are independent, P (XU = 1) = P (XZ = 1) = P (XU = 0) = P (XZ = 0) = 1/2, and
XW = XU , XY = XZ , and XX = XWXY .

For the graph GC , U—W—X—Y—Z, Lauritzen [7] shows that this distribution is in
ML(GC) but not MG(GC). The distribution is not in MC(GC) because its Hamming
graph is not connected.

3.3. ∃G : MG(G) \ (ME(G) ∪MC(G)) 6= ∅

The following distribution from Lauritzen [7, Example 3.15] and Matúš and Studený [10]
illustrates that, relative to some graph, there are distributions that are globally Markov
but neither extended Markov nor able to be conditionally specified.

(L3.15) A distribution P for variables XA, XB , XC , and XD, where all variables have
three possible values a, b, and c, and each of the following nine states have probability
equal to 1/9:

(a, a, a, a), (b, a, b, c), (c, a, c, b),
(a, b, b, b), (b, b, c, a), (c, b, a, c),
(a, c, c, c), (b, c, a, b), (c, c, b, a).

For the four-cycle graph G4 that contains the edges A B, B C, C D and
A D, Lauritzen [7] and Matúš and Studený [10] show that this distribution is in
MG(G4) but not ME(G4). The distribution is not in MC(G4) because any two points of
support differ in three variables, which implies that its Hamming graph is not connected.

3.4. ∃G : (ME(G) ∩MC(G)) \MF (G) 6= ∅

The following distribution from Lauritzen [7, Example 3.10] and Moussouris [9] illus-
trates that, relative to some graph, there are distributions that cannot be factored but
are in the set of extended Markov distributions and can be conditionally specified.

(L3.10) A distribution P for four binary variables XA, XB , XC , XD with support only
on the points

(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0),
(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1),
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and equal probability mass on each point. That is, for instance, P (XA = 0, XB = 0,
XC = 0, XD = 0) = 1/8.

Consider the four-cycle graph G4, as used in the previous example. This distribution
is not in MF (G4) [7, p.37] but is in ME(G4) [7, p.40]. It is straightforward to verify that
the univariate conditionals of the distribution define a univariate Gibbs sampler with
the correct stationary distribution. In particular, note that each point with support is
Hamming distance one from two other points with support and that every point with
support is reachable from every other point. Therefore, the distribution is in MC(G4).

3.5. ∃G : MF (G) \MC(G) 6= ∅

We now come to new examples.
The following distribution illustrates that, relative to some graph, there are distribu-

tions that cannot be conditionally specified but factor.

(D1) A uniform distribution for two binary random variables XA, XB with support only
on the points (0, 0), (1, 1).

Such a distribution is in MF (A B) because the graph is complete and all distribu-
tions for two variables can be represented by the trivial factorization. The distribution
is not in MC(A B) because the two points of support have a Hamming distance of
two, which means that there is no way for a single-site Gibbs sampler to visit both of
the points in the support of the distribution (infinitely often) without visiting points not
in the support.

3.6. ∃G : (MF (G) ∩MC(G)) \M+
C(G) 6= ∅

The following distribution illustrates that, relative to some graph, there are (non-strictly
positive) distributions that factor and can be conditionally specified.

(D2) A distribution for two ternary random variables XA, XB each taking values in
{0, 1, 2}. We will define the distribution to be uniform on the following seven combina-
tions in the set:

({0, 1, 2} × {0, 1, 2}) \ {(0, 2), (2, 0)}

with support only on these combinations.
As argued for distribution (D1) above, such a distribution is in MF (A B) and

ME(A B). In addition, the distribution is in MC(A B) because the Hamming
graph for this distribution is clearly connected, since it contains the following eight
edges:

(i+ 1, i) (i, i) (i, i+ 1) for i = 1, 2,
(i− 1, i) (i, i) (i, i− 1) for i = 2, 3.

However, clearly the distribution is not positive.
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3.7. ∃G : MC(G) \MG(G) 6= ∅

We now present a distribution that is in MC(G) but not MG(G) for some G. The
construction is based on Example 3.5 in [7] (see § 3.2 above).

The support of the distribution in this example does not permit it to be sampled
from via a univariate Gibbs sampler, because there are only four support points:

(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 0, 0, 1, 1), (1, 1, 1, 1, 1),

and they are all separated by Hamming distance at least two.
To define our distribution, we add an additional variable T to the graph

U W X Y Z, which is a neighbor of {U,W,X, Y, Z}.

(D3) The distribution over 6 binary variables {XT , XU , XW , XX , XY , XZ} where
P (XT = 1) = 0.5, P (XU , XW , XX , XY , XZ |XT = 0) = 2−5 (i. e., uniform over the
states) and P (XU , XW , XX , XY , XZ |XT = 1) = P (XU |XT = 1)P (XZ |XT = 1)P (XW |XU ,
XT = 1)P (XY |XZ , XT = 1)P (XX |XW , XY , XT = 1) with

P (XU = 1 |XT = 1) = 0.5,
P (XZ = 1 |XT = 1) = 0.5,

P (XW = a |XU = a,XT = 1) = 1.0,
P (XY = a |XZ = a,XT = 1) = 1.0,

P (XX = ab |XW = a,XY = b,XT = 1) = 1.0,

where a, b are the possible values (0 or 1) of the variables.

The resulting distribution P (XT , XU , XW , XX , XY , XZ) has support on the 36 point
space:

{0} × {0, 1}5 ∪ {1} × {(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 0, 0, 1, 1), (1, 1, 1, 1, 1)}.

It is simple to see that there is now a path between any two points in the support
space such that each pair of adjacent points has Hamming distance one. The Markov
chain resulting from the Gibbs sampler will be irreducible and ergodic, and hence will
have a unique limiting distribution. This limiting distribution will be as described above.

It now only remains to observe that the distribution obeys all of the conditional
independence relations required by the Local Markov property applied to the graph:

XU ⊥⊥ XX , XY , XZ | XW , XT ,

XW ⊥⊥ XY , XZ | XU , XX , XT ,

XX ⊥⊥ XU , XZ | XW , XY , XT ,

XY ⊥⊥ XU , XW | XX , XZ , XT ,

XZ ⊥⊥ XU , XW , XX | XY , XT ,

but does not obey the global property because

XW 6⊥⊥ XY | XX , XT .



374 D. HECKERMAN, CH. MEEK AND T. S. RICHARDSON

3.8. ∃G : (MC(G) ∩MG(G)) \ME(G) 6= ∅

We apply a similar construction to that used in Section 3.7 to Example 3.15 in Lauritzen
[7] (see § 3.3).

(D4) The distribution over ternary variables XA, XB , XC , XD and binary variable XT ,
where P (XT = 0) = P (XT = 1) = 0.5, P (XA, XB , XC , XD|XT = 0) = 3−4, and
P (XA, XB , XC , XD|XT = 1) is the distribution specified in (L3.15).

The resulting distribution is globally Markov with respect to the graph G5 that con-
tains only the edges A B, B C, C D, A D, T A, T B, T C and
T D. This follows because, givenXT = 0, the variablesXA, XB , XC , XD are marginally
independent. Also, we have

XA⊥⊥XC | XB , XD, XT = 1

because the conditional distribution over (XA, XC) is degenerate. Likewise, we have

XB⊥⊥XD | XA, XC , XT = 1.

To demonstrate that the distribution is not in ME(G5), we follow the argument given
in Lauritzen [7, p.42]. First note that each of the pairs (XA, XB), (XB , XC), (XC , XD),
(XA, XD) are uniformly distributed under P given T = 0 and given T = 1. Hence, each
of the triples

(XA, XB , XT ), (XB , XC , XT ),

(XC , XD, XT ), (XA, XD, XT )

are uniformly distributed on the 18 element space: {a, b, c} × {a, b, c} × {0, 1}. Hence
P has the same clique marginals as the uniform distribution Q defined by taking
Q(XA, XB , XC , XD, XT ) = 2−13−4. Q is clearly in ME(G5). It then follows by Lemma
3.14 in Lauritzen [7] that P /∈ ME(G5), because distributions in ME(G5) are uniquely
identified via their clique marginals.

Finally, we observe that P ∈ MC(G5) because every point with support is reachable
from every other point via a sequence of points which are Hamming distance one apart.

3.9. ∃G : ME(G) \ (MF (G) ∪MC(G)) 6= ∅

The following distribution illustrates that, relative to some graph, there are distribu-
tions in the set of extended Markov distributions that do not factor and cannot be
conditionally specified.

(D5) A distribution P over 5 binary variables {XA, XB , XC , XD, XT } with support
only on the 16 points:

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0),
(0, 0, 0, 1, 0), (0, 0, 1, 1, 0), (0, 1, 1, 1, 0), (1, 1, 1, 1, 0),

(0, 1, 0, 0, 1), (0, 1, 0, 1, 1), (1, 1, 0, 1, 1), (1, 0, 0, 1, 1),
(0, 1, 1, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 0, 1), (1, 0, 1, 1, 1),
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with equal probability mass on each point. That is, for instance, P (XA = 0, XB =
0, XC = 0, XD = 0, XT = 0) = 1/16.

We again consider graph G5. Every point in the second set of eight support points is
Hamming distance greater than or equal to two from every other point in the first set
of eight points in the support. Thus the distribution is not in MC(G5). Next we show
that the distribution is not in ME(G5) using the same technique as Lauritzen does for
his Example 3.10 [7, p.38]. Aiming at a contradiction, we assume that the distribution
factors with clique potentials ψABT (·), ψBCT (·), ψCDT (·), ψADT (·). Then

1/16 = P (0, 0, 0, 0, 0) = ψABT (0, 0, 0)ψBCT (0, 0, 0)ψCDT (0, 0, 0)ψADT (0, 0, 0).

But also

0 = P (0, 0, 1, 0, 0) = ψABT (0, 0, 0)ψBCT (0, 1, 0)ψCDT (1, 0, 0)ψADT (0, 0, 0).

From which it follows that

ψBCT (0, 1, 0)ψCDT (1, 0, 0) = 0.

Since

1/16 = P (0, 0, 1, 1, 0) = ψABT (0, 0, 0)ψBCT (0, 1, 0)ψCDT (1, 1, 0)ψADT (0, 1, 0)

it is the case that ψBCT (0, 1, 0) 6= 0. It follows that ψCDT (1, 0, 0) = 0. However, this
contradicts the fact that

1/16 = P (1, 1, 1, 0, 0) = ψABT (1, 1, 0)ψBCT (1, 1, 0)ψCDT (1, 0, 0)ψADT (1, 0, 0).

It remains to show that P ∈ME(G5). We use the same proof technique as Lauritzen
[7, p. 40] and describe a sequence of distributions Pn ∈MF (G5) whose limit as n→∞
is distribution (D5):

Pn(a, b, c, d, t) =
nt(1−(ab+bc+cd−ad−b−c+1))+(1−t)(ab+bc+cd−ad−b−c+1)

16 + 16n
.

The expression f(a, b, c, d) ≡ ab+bc+cd−ad−b−c+1, as in Example 3.13 of Lauritzen
[7, p. 40], is equal to one for points that agree in the first four coordinates with a point
in the first eight support points and is zero otherwise. Thus, (1− t)× f(·) is one for the
first set of eight support points and zero otherwise. Similarly, t × (1 − f(·)) is one for
the second set of eight support points and zero otherwise. Therefore, the expression in
the exponent of the numerator is one for each point in the support and zero otherwise
which justifies the normalizing constant. Each distribution Pn factors according to G5

because each product of variables that occurs in the numerator is a subset of the cliques
of the graph.
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4. SUMMARY AND DISCUSSION

We have shown that all definitions agree for strictly positive distributions, but disagree as
described in Figure 1b for general distributions. In closing, we make several observations
and raise questions for future work.
MC(G) is not always convex. As an example, consider the domain {XA, XB ,

XC , XD, XE}, the graph G5, and the two distributions:

(D5a): The distribution with equal support on only the points

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0),
(0, 0, 0, 1, 0), (0, 0, 1, 1, 0), (0, 1, 1, 1, 0), (1, 1, 1, 1, 0);

(D5b): The distribution with equal support on only the points

(0, 1, 0, 0, 1), (0, 1, 0, 1, 1), (1, 1, 0, 1, 1), (1, 0, 0, 1, 1),
(0, 1, 1, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 0, 1), (1, 0, 1, 1, 1).

Whereas both (D5a) and (D5b) are inMC(G5), their equal mixture, distribution (D5),
is not (see Section 3.9).

The pointwise limit of a set of distributions in MC(G) is not necessarily in MC(G).
For example, consider domain {XA, XB}, the complete graph G, and the set of dis-
tributions parameterized by 0 < ε < 1 such that P (0, 0) = P (1, 1) = (1 − ε)/2 and
P (0, 1) = P (1, 0) = ε/2. All such distributions are in MC(G), but their limit, as ε goes
to zero, is not. It follows that the maximum likelihood estimate for the limit distribution
lies on the boundary of MC(G) — that is, the maximum likelihood estimate for this
distribution does not exist under MC(G).

We noted earlier that the class MC(G) can be extended to include k-site Gibbs
sampling. We should note that such an extension (regardless of k) does not yield a
class equal to ML(G). For example, consider the distribution with two support points
(1, 1, . . . , 1) and (0, 0, . . . , 0) and any non-complete graph without isolated vertices (i. e.
every vertex has a neighbor). The distribution satisfies the local Markov condition for
the graph but is not in MC(G), because all variables would need to change at the same
time.

Finally, we note that for decomposable graphs G, Lauritzen [7] shows that ME(G) =
MF (G). Because the graphs corresponding to examples (D3) and (D4) are decompos-
able, however, MC(G) 6= ME(G) for this class of graphs. An interesting set of questions
is whether there are non-trivial classes of graphs and/or distributions for which MC(G)
is equal to one or more of ML(G), MG(G), ME(G), or MF (G).
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