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Abstract

Letp’,q € R™. Write p’ ~ ¢ if p’ — ¢ is a multiple of(1,...,1). Two
different pointsp andq in R/ ~ uniquely determine a tropical link(p, q),
passing through them, and stable under small perturbati®hss line is a
balanced unrooted semi—labeled treendraves. It is also a metric graph.

If some representativesandq’ of p andqg are the first and second columns
of some real normal idempotent ordermatrix A, we prove that the tree
L(p, q) is described by a matri¥’, easily obtained fromd. We also prove
thatL(p, q) is caterpillar. We prove that every vertexiiip, q) belongs to the
tropical linear segment joining andq. A vertex, denotegbq, closest (w.r.t
tropical distance) te exists inL(p, q). Same forg. The distances between
pairs of adjacent vertices ih(p, ¢) and the distances(p, pq), d(¢p, ¢) and
d(p, q) are certain entries of the matiix|. In addition, ifp andq are generic,
then the tred.(p, q) is trivalent. The entries of' are differences (i.e., sum of
principal diagonal minus sum of secondary diagonal) of o2dainors of the
first two columns ofA.

1 Introduction

arXiv:1310.0174v2 [math.MG] 10 Apr 2014

Tropical algebra, geometry and analysis are novelties ithemaatics. As for alge-
bra (also called extremal algebra, max—algebra, etc.) jitsisalgebra performed
with unusual operationsnax (for addition) and+ (for multiplication). As for ge-

ometry, it can be understood as a degeneration (or shadoalasdical algebraic
geometry.

Tropical mathematics is an exciting fast growing field ofeash; see the col-
lective works [20] 27, 28], some general references forid¢ed@lgebral[l, 2,18, 12,
18], some general references for tropical geometry|[5, B11621 /22, 28, 30, 32,
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34,138,39] and some pioneer works [11] 19 [40,[41, 42] amohgrst In [3]9]
tropical curves are presented as metric graphs.

In classical projective geometry, it is easy to determirgelithe passing through
two different given pointg andq. If [p1,p2,...,p,] @andlqi, g, . . ., g, ] are projec-
tive coordinates over a field, then the points= [z, z9, ..., x,] in such a line are
described by the rank condition

b1 @1 *1
b2 G2 X2

rk ) ) ) =2
Pn Q4n Tn

A basic question in tropical mathematics is to establishptaperties of the
unique tropical lineL(p, ¢), stable under small perturbations, determined by two
given pointsp andq (to be preciseL(p, q) is the limit, ase tends to zero, of the
tropical lines going through perturbed poipts, ¢'<. Here,p'< denotes a translation
of p by a vector, whose length ig). The aim of this paper is to answer this question
in a particular instance, namely, when coordinateg ahdq are columns of some
normal idempotent square real matrx

Tropical algebraic varieties can be defined algebraicaljynjeans of ideals) or
geometrically (by means of amoebas). Tropical curves camlzd defined combi-
natorially (by means of balanced weighted graphs). Folicebfines, weights can
be disregarded, since they all are equal to one. This papboig thecombinatorial
descriptionof the line L(p, ¢). Moreover, we obtairl.(p, q) as a metric graph, with
additional information. Indeed, in metric graphs, leavagehinfinite length, while
edges have finite length. The pojnt{which, in general, is not a vertex @f(p, q))
sits on a certain leaf of(p, ¢), and we determine the length fropnto the closest
inner vertex ofL(p, q) (same forg). These two lengths are extra information for the
metric graphL(p, q).

In this paper we never useco. Write & = max and® = +. These are the
tropical operations addition and multiplication Rf*. Let (e1,e9,...,e,) denote
the canonical basis iR". We work in the quotient spac@” ! := R"/ ~; see[(B).
There is a bijection betweef” ! andR™ 1.

Given differentp, ¢ € Q™ !, there may exist many tropical lines passing through
p andgq, but there is only one such line which is stable under smatugeations;
seel[22| 177,32, 37]. Itis denotddp, q).

What do we know about tropical lines i)"~'? The cases = 2 or 3 are
easy. Set, = 4. In the generic case,teopical linein Q? is abalanced polyhedral



complexconsisting of four rays;, r2, r3, r4 and an edge, so that
4
L(p,q) =rU U T
j=1

The rayr, extends infinitely in the direction ef; + e; + e3 and positive sense, and
the raysr; do so in the negative; direction, forj = 1,2, 3.

For arbitraryn, agenericline L in Q"~! is abalanced unrooted trivalent semi—
labeled tre€l” on leaves marketl, 2, ..., n. Leaf markedj in T' corresponds to ray
rj in L. This tree issemi—labeledecause its inner vertices are left unlabeled. This
is all well-known; see [17, 21, 22, 30,/132,/35].

What do we prove about(p, q)? Lettconv(p,q) denote the tropical segment
joining p andq in Q"~'. We havetconv(p,q) C L(p,q), following [14]. Sup-
pose thaip, ¢ have representatives IR™ whose coordinates are the first and second
columns of some normal idempotent square real matrof ordern. in this paper
we prove that every vertex df(p, q) belongs taiconv(p, q); see theorer 13. This
is not true in less restrictive conditions. Sineenv(p, ¢) is compact, then there is
a vertex inL(p, q) closest top (same forg), with respect to tropical distance (see
(5) for the definition and properties of tropical distanddpreover, the tred.(p, q)
is caterpillar. Ifp andq are generic, theii(p, ¢) is trivalent; see also theordm]13.

The paper goes as follows. First, we definedifeerenceof an order 2 matrix;
see definitior 1. We define thmatrix of differencest” = (fy;) relative to two
columns ofA. Then, forn = 4 we prove that the combinatorics of the treg, q)
are determined by the sign ¢§4; see remark in p[_13. Moreover, the tropical
distancesl(p, pq), d(pq, gp), d(q,gp) andd(p, q) are certain entries of the matrix
of absolute value§F'|. Herepg (resp. gp) denotes the vertex df(p, q) closest to
p (resp. tog), with respect to tropical distance. Notice thgtandgp are the only
vertices of the linel(p, q), for n = 4. This is theoreni]7. Then, theoréml 13 is an
extension of theoreill 7 to arbitrary

The key to theorerh 13 is additivity of matrik, as stated in[(12). To prove
thatd(p,q) = |f12] is straightforward; see lemnid 4. The proof of theoferh 13
is recursive. It goes as follows. The combinatorics of tlee tt(p,q) and the
distances between consecutive vertices in it are detechiine — 3 steps. For each
step, we deal with an old tréE’ and a new tred". The treel’ has one more leaf
that 7’. More precisely,T" is atropical modificationof 7" (see [5/ 6/ 29] for the
meaning of modification in tropical geometry). All the distes inT" are kept the
same as irf” with one exception: a distance i{ breaks up into two, due to the
tropical modification that has happened. We make this bngghiecise by defining
fractures see definitiod 11. For the understanding of the whole psaesample
[14 is provided in full detail, step by step, with accompangyfigures b t¢ D.



We work with only two columns of a normal idempotent matrix,(for short).
These matrices! = (a;;) are defined by extremely simple linear equalities and
inequalities; se€ (1). These inequalities are crucial fotaicarry computations
through! Normal matrices were first studied by Yoeli (undeother name) in [41].
Normal idempotent matrices are related to metrics in([2B, S6e [31] for applica-
tions of NI matrices to alcoved polytopes, ahd![26] for apgions of normal and
NI matrices to tropical commutativity.

Our results and definitions are gathered in sectidnis 3, 4lancemmad and
theorem ¥V were obtained with A. Jiménez and appeared befd@d]. Strictly
speaking, the contents of sectldn 4 are included in sectibio®ever, we prefer to
keep sectiof]4 as it stands, because it is helpful for thepgrgof the rest of the
paper.

2 Background

Forn € N, set[n] := {1,2,...,n}. LetR"*™ denote the set of real matrices having
n rows andm columns. Define tropical sum and product of matrices follayvi
the same rules of classical linear algebra, but replacimtiad (multiplication)
by tropical addition (multiplication). We will never useasisical multiplication of
matrices, in this note.

We will always write the coordinates of points in columns.

By definition, a square real matrit = (a;;) is normalif a; = 0 anda;; < 0,
all 7,7 € [n]. Any real matrix can be normalized, not uniquely; se¢ [7o8[details.
A matrix isidempotentf A = A® A. If each diagonal entry ot = (a;;) vanishes,
thenA < A ® A, because for eachj € [n], we have

a;j < maxa;; + ap; = (A O A)jj.
ke[n]

We will work with normal idempotent matricgdI, for short). Being NI is charac-
terized by the following linear equalities and inequatitie
a;; =0, ai <0, ajp+ar; <agj, 1,5,k €[n], card{i,j k} >2. (1)

In particular,a;;, + ax; <0, fori, k € [n].

The tropical determinant(also calledtropical permanent, max—algebraic per-
manenfetc.; seel[§, 32]) ofl = (a;;) € R™*" is defined as

’A‘trop = ine%): QA10(1) + a24(2) et Ano(n)s

where.S,, denotes the permutation grouprrsymbols. The matrix is tropically
singular if this maximum is attained twice, at least. Otherwisk,is tropically
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regular. We will never use classical determinants in this note. $8gfpr tropical
rank issues.

Two different pointsp’, ¢’ in R™ determine the following set of tropical linear
combinations:

Ao epned eR": A\ pueR}. )
This set is closed under tropical multiplication by any reaberv i.e., it is closed
under classical addition of vectors:, for u = (1,...,1). Therefore, it is useful to
work in the quotient space
Q"1 :=R"/~ (3)
Where(al, as, . .. ,an) ~ (bl, by, ..., bn) if

(al,ag,...,an):)\(D(bl,bg,...,bn):()\+b1,)\+bg,...,)\+bn),

for some) € R. The class ofi = (aq,...,a,) € R™ will be denoteday, ..., a,]

or @. The operationsp and ® carry over toQ"~!. Each element i)™~ ! has
a unique representative whose last coordinate is;nllparticular, Q"' can be
identified with the classical hyperplane

H,={zxeR":z, =0} (4)

inside R™. As vector spacesH,, is isomorphic toR”~!. We will often identify
Q™! with H,, in the sequel. By this identification, the topology inducsdtie
tropical distance corresponds to the usual topology.

Given different pointg, ¢ € Q™ !, consider representatived ¢’ in R™. The
image of [2) inQ™ ! is denotedtconv(p, ¢) and called theropical line segment
determined by andgq. By [14], the set.conv(p, q), viewed inH,,, is the concate-
nation of, at mostp — 1 ordinary line segments, and the slope of each such line
segment is a zero—one vector. For negaly&ery large in absolute value, we get
AOp epueqd =p6q,whencel ©® p@® p® g = ¢is an endpoint ofconv(p, q).
(Here we have a difference between classical and tropicthemaatics. In classi-
cal mathematics, expressidn (2) corresponds to a line, segaent!) The tropical
segmentconv(p, ¢) is compact and connected, classically.

Forp € R™, set
[lpl| := max {|pil, [p; — p;|}-
i,j€[n]

Forp,q € Q" ', choose (unique) representatiyésq’ € R™ with null last coordi-
nate and set

d(p,q) == |[p' — || = max {|p; — ¢l |pi — s — p; + ¢;1}- (5)
i,5€[n]



This defines a distance (or a metric)(i@" !, ®, ®), calledtropical distance see
[10,/13,14[ 31]. We will not use any other distance in thisgrap

Recall that thenteger length(also called lattice length) of a classical segment
ab in R™ joining pointsa andb is the ratio between the Euclidean lengthuéfand
the minimal Euclidean length of integer vectors paralleliolf a,b € Z?, then the
integer length ofib is one less the number on integer points on the segatent

Recall that the tropical segmetbnv (p, ¢) is a concatenation of classical bounded
segments. Thus, the integer lengthtednv(p, q) is the sum of the integer lengths
of those segments (seelg. 5). It turns out th@t ¢) equals the integer length of
tconv(p, q).

Notice thatd is additive for tropically collinear points. For exampléyenp, ¢, r
ands € Q? (represented in figuid 1 by points iy ~ R?), with p’ = (-2, —2,0)?,
q¢ = (0,0,0), 7" = (=5,—2,0)t ands’ = (—2,—5,0)!, we haved(p, q) = 2 (not
2v/21), d(r,s) = max{3,6} = 6 = 3+ 3 andd(r,q) = max{5,2,3} = 5 =
342 =4d(s,q).

(0,0,0)=q"

: (-2,-2,0)'=p’
(-5,-2,0)'=r

(-2,-5,0)'=s"

Figure 1: Tropical line inQ? with vertex at the poinp = [—2, —2, 0]*. It looks like
a tripod. Distances are indicated in green.

For anyS C [n], writeeg := ) ._¢ e; and notice that

jeES
€5 = —ege InQ" Y, (6)

whereS¢ is the complementary t6 in [n]. In particular,e;z_,, = 0.

Any unbounded closed segmenfRfi—! in the direction of some canonical basis
vector and negative sense is callechy. Write r; for a ray in thee; direction, for
j € [n—1]. Any unbounded closed segment in the directiomef ,,_; and positive
sense is also calledray. By abuse of notation, we denote such a raypyA ray
r; is maximalinside a lineL if the endpoint ofr; is a vertex ofL. An edgeis a
bounded closed segment.



We haved = max and® = +. Then, atropical monomialis a classical linear
form ). a;z;, and atropical polynomialis a maximum

P(xy,2,...,2,) = MAX Cq + 121 + 202 + -+ Anln, Ca € R,
ac

and A C N" finite. The corresponding functioR : R® — R is piecewise linear
and concave. Thaopical hypersurfacaletermined byP in R” is the set of points
where themaximum is attained twice, at leadEquivalently, it is the set of points
where P is not differentiable; see [5) 6, 17,122,180/ 32| 33]. In martar, we have
tropical lines, planes and hyperplaneRih. Then we mod out by, to get tropical

lines, planes and hyperplanes@i—!.

We work in (Q"~1, @, ®). Algebraically, a tropical line in codimension one
(i.e., inQ?) is determined by one tropical polynomial of degree one.opitral line
in higher codimension is determined by an ideal generatedielgyee—one tropical
polynomials. Tropical lines have been thoroughly studie{BB]. The paper[32]
contains a detailed description of tropical lineh; see below p.18.

A generic lineL in Q? looks like a tripod inH3 ~ R?; see figur&lL. It consists of
three rays-, ro, 73 meeting at vertex. I, = L(p, q), then the vertex is computed
by thetropical Cramer’s rule see[32], 35, 37]. It goes as follows: given coordinates
[p1, P2, 3]t [q1, q2, 3] for p andgq, consider the x 2 tropical minors:

mij = ‘ pz_ qi_ = max{p; + ¢;,p; + ¢} (7)
Pj 4 trop
Then the vertex of.(p, q) is
[—mag, —m13, —maa]’. (8)

Fix n = 4. Let us identifyQ?3 with H, ~ R3. Set theoretically, &opical line
L in R3 consists of four rays;, 2, 3, 74 and, in the generic case, an edge

4
L:rUUTj.
j=1

We haver; Nr # 0, for all j € [4]. If r collapses to a point (in the non—generic
case), them; Nry, # 0, for all j,k € [4]. Aline L in @3 belongs to one of the
following combinatorial types

{12,34},  {13,24},  {14,23}, {1234}

Indeed, the lineL is of type {ij, kl} if and only if L has two vertices, denoted
v andv*, and the segments r;,7; meet at’”’ andr, r;, r, meet at*!, where
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{i,7,k,1} = [4]. In particular, types can be written in various ways: forrapée,
{12,34} = {21,34} = {21,43} = {34,12} = {43, 12}, etc. Moreover, the liné&
is a trivalent tree if its type i$12, 34}, {13,24} or {14, 23}, and this is the generic
case; see figufd 2. Lét, j, k, 1} = [4]. We can assume that~ 4 # j, without loss
of generality. Notice thahe direction of the segmenif a line L of type{ij, ki} is
eij, by the balancing condition. On the other hand, if the typé &f {1234}, then
the edger has collapsed to a point, and the four raysr,, r3, r4 meet at a point,
called vertex ofl and denoted'23*.

Figure 2: Some tropical lines in 3—space: tyjgd, 23} on the left, type{12,34}
center and typg 1234}, on the right. These are non—planar balanced polyhedral
complexes ind, ~ R3, where the ray, points in the directior23, positive sense.
The segment separates rays , r4 from ro, r3 in the {14, 23} case.

It is well-known that two different pointg, ¢ € Q* determine a unique tropical
line L(p, ¢) passing through them and stable under small perturbatees{14, 32,
33]. If L = L(p,q) and we want to compute the vertices of this line, first we must
find out the combinatorial type af. Here we follow [32]. Forl < i < j < 4,
consider the x 2 tropical minorsm;; defined in[(¥Y). These minors can be arranged
into an upper triangular matrix

mia M1z Mi4
M = mo3 124 . (9)
m34

The m;; are not independent: they satisfy thepical Plicker relation i.e., the
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following maximum is attained twice, at least:
m 1= max{mia + msa, mi3 + Maa, M14 + Maz}. (10)

Then, by [32],
e the type ofL(p, q) is {12,34} whenms + msq4 < m,

(P, 9)
o the type ofL(p, q) is {13,24} whenmys + maoy < m,
o the type ofL(p, q) is {14, 23} whenmy + ma3 < m,
(P,9)

o the type ofL(p, q) is {1234} when the maximumn is attained three times.

A point z belongs taL(p, ¢) if and only if

P1 @1 *1
rk b2 G2 X2 2.
b3 g3 I3

O e

This tropical rank condition means that the value of each of the followihg 3
tropical minors is attained twice, at least:

P2 G2 X2
mi(z) == | p3 gz x3 | =max{xs + msq, T3+ Mo, xs + Moz}

Pa g4 T4 g,

P1 @1 T
mo(z) :=| p3 ¢z 3 | =max{xy + ms4, T3+ Mmis,xs +mi3}

Pa Q4 T4 g,

pr g1 1
m3(x) == | p2 g2 x2 | = max{x; + mo, T2 + mis,Ts +mi2}
Pe g4 24

trop
b1 @1 T1

ma(z) :=| p2 g2 x2 | =max{x] + ma3, 2 +mi3, x3 + mia}.
b3 g3 T3

Each tropical determinant above has been expanded by ttelamn, by the trop-
ical Laplace’s rule. Now, for any positive, large enougk R, the points

trop

. —MmM34 o —U _ —M14 _ —mi3
y1(u) = Moy yy2(u) = M ,y3(u) —u s ya(u) — Mo
—ma3 —mis3 —mi2 —u



satisfy that the maximum;(y;(u)) is attained three times, for eaghe [4]. More-
over, the pointy;(u) moves along a ray;, asu tends to4-oo.

Say the type ofL(p, q) is {12,34}. Then valuesu;,ug, us,us € R can be
determined so that; (u1) = y2(u2) := v'2 andys(uz) = ya(us) := v**, obtaining
the following vertices fotl.(p, ¢) in Q3:

mi3 — Ma23 — M34 —Mma4

012 — —M34 . vt = —Mmis
—Mm24 mi3 —Mmi2 —Mi4

—ma3 —mi2

Say the type ofL(p, q) is {13,24}. Similar calculations yield the following
vertices for the line.(p, ¢), in this case:

—mMog —ma3

13 = —mig ’ vt = —nis . (11
—Mag — M14 + M3y —mi2
—mi2 —mi3 —mi2 + Mmiy

Say the type of.(p, ¢) is {1234}. Then we get

mi3 + mi4g — M3y
mi2
L1234 —

Computations are similar for typ 4, 23}.

Suppose now: that is arbitrary. Agenericline L in Q" ! is (identified with)
a balanced unrooted trivalent semi—labeled tf€eon leaves marked,2,...,n
inside H,, ~ R"~!. Leafj of T corresponds to ray; of the line L, while the inner
vertices of7" are left unlabeled. In particular, generic tropical lingsrgy in Q™!
and@Q™~! cannot be homeomorphic,sif # m.

We consider the spacg, of phylogenetic trees, studied in detail in [4) 33] (al-
though this space is denot€q'’,, in [33]). ThenT,, is a simplicial complex of pure
dimension equal ta — 4. The number of facets of,, is

(2n — 5)!!

(i.e., the product of all odd numbers between-5 and 1, calledschibder numbey.
Each facet of7,, corresponds to a combinatorial type of unrooted trivalegins-
labeled trees om leaves, i.e., to a combinatorial type of generic lineQi—!. In
particular, forn = 4, there are 3 types (we have seen these types above; they were
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denoted{12, 34}, {13,24} and{14, 23}); for n = 5, there are 15 types; for = 6,
there are 105 types, and so on.

It is known (seel[35]) thafs is the Petersen graph: it has 15 edges (these cor-
respond to the 15 types of generic tropical line§)it) and 10 vertices (these corre-
spond to types of non—generic tropical lines, where theadegf some vertex of the
line is 4). Every generic tropical line i@* is a trivalent caterpillar tree on 5 leaves;
seel[33_3b].

Recall that a tree isaterpillar if it contains a path passing through every vertex
of degree> 2. For instance, every tree on four leaves is caterpillar. figeee[3 for
trivalent caterpillar and snowflake trees on six leaves.

It is known that7g has 25 vertices, 105 edges and 105 triangles (i.e., there
are 105 types of generic tropical lines@?): 90 triangles correspond to trivalent
caterpillar trees on 6 leaves, and 15 triangles to trivadantvflake trees on 6 leaves;
see|[[32, 33].

Any trivalent semi—labeled tréE onn leaves can be described by a finite family
of bipartitions of [n]: a bipartition for each inner edge &f.

Given pointsp, ¢ € Q"~!, we will have to describéd.(p, ¢) as a tree, combina-
torially. If L(p, ¢) is trivalent, this will be achieved by giving a family of bigigions
of [n]:

{Slv Sf}7 {527 Sg}v R {St7 Stc}v

for somet € NandS; C [n], j € [t].

3 Differences and tropical distances

Definition 1. Given numbers, b, ¢, d € R, thedifferenceof the matrix[ CC" Z ]
isa + d — b — ¢ (principal diagonal minus secondary diagonal).
ConsiderAd € R™*™ and writej to denote thé—th column ofA. Leti, j, k,1 €

[n] with i < j andk < [. By A(kl;ij) we denote the mino{ Zki ij ]
oAl

Definition 2. Fix thei—th andj—th columns of a matrid € R™*", with1 < i <
j<n.Forl <k<l<n,setF = (fy) with

T = ag; + aiy — agj — ay

i.e., fr; is thedifference of the minor (kl;ij). (Obviously, the matrix¢’ depends
oni andj).
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Figure 3: Two trivalent semi—labeled trees on six leaves ifher vertices are not
labeled. On the left, caterpillar having three inner edgéhis tree is described
the bipartitions{36, 1245}, {236, 145}, {2356, 14}. There is one inner edge sepa-
rating leaves marked 3 and 6, from leaves marked 1, 2, 4 andn5th®right, a
snowflake tree having three inner edges. This tree is desthly the bipartitions
{26, 1345}, {14, 2356}, {35, 1246}.

Clearly,
Jui + fir = fr (12)
for k < [ < r. Thisadditivity (similar to that of Pascal triangle) tells us thatcan
be recovered from entrie§,_ ;. Compare with subadditivity ol shown in[(1).

Lemma 3. If A € R"*" is Nl and I is defined above, thef), > 0, fori < [ and
fin <0, forj <.

Proof. fu= apj — ai; — Q4 >0 andfjl =aj; +a —ay <0, by G]) [l

Examples off’ can be found in d._16 ard 23.

Forl <i<j<mn,let L{} denote the line determined by columish andj—th
of A. Write L;;, if A is understood. We will see thabme entries of the absolute
value matrix|F'| are equal to some tropical distances between certain poihnis;,
the distance being defined [d (5).

To begin with, we have an easy lemma.

Lemma 4. Assumed € R™*" is Nl and fix1 < ¢ < j < n with F' as in definition
2. Thend(i, j) = |fi;|.

12



Proof. We can assumé = 1 andj = 2, by a change of coordinates. Then, by
equivalence Q" !,

—ai2 0

as as1 + a2

1—2=| @31 —a3zx | = | a31 —asz +a
| Gnl — Gn2 | | Gnl — Gp2 + a12 |

Entries in the last column are non positive, by (1), the sesalbbeingis; + a1 < 0,
again by[(1). Thusd(1,2) = [a21 + ai2| = | f12|. O

4 Casen =14

Assume thai # 4 # j. A generic lineL is a semi-labeled trivalent tree on four
leaves. It has just one inner edgeRecall thatL is of type{ij, kl} if and only if e;;
is the direction of the edge Leavesi, j (resp.k, () lie to one endpoint of (resp.
to the other endpoint).

Recall thatL;‘} denotes the line determined by columnth andj—th of A.

Lemma 5. Assumed € R**4 is a NI matrix. Let{s, j, k,1} = [4] withi < j. Then
the type ofL;‘} is not{ij, kl}; itis {ik, jl}, {il, jk} or {1234}, (easy to remember:
i andj must be separated by the comma, unless the type2ist }).

Proof. Without loss of generality, assume that 1, j = 2. Writep =1, ¢ = 2
andL(p, q) = L. ComputeM in (@) andm in (I0), using[(1), to obtain

0 azz ag
M = az1 ag |, m=max{a,azr+as, a3 +as}, a = |A(34;12)|top-
(6%
(13)
Then, the valuex is attained at the main (resp. secondary) (resp. both) dal(g)
of A(34; 12) = [ 231 232 ] if and onIy if o = as1 + asn (resp.a = a3z + a41)
41 42
(resp. as; + aqo = asz + aqy) if and only if the type ofLis is {13,24} (resp.
{14, 23}) (resp.{1234}). Thus,L;2 is not{12,34}. O

Remark: looking at the former proof and definitldn 2, noticattthe type of 7,
is {13,24} if and only if f34, > 0. If the type were{14, 23}, thenfs, < 0 and if the
type were{1234}, then f34, = 0.

Recall that maximal rays inside a line were defined inlp. 6.
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Lemma 6. Assumed € R**4is NI and let{i, j, k,1} = [4] withi < j. Then the
vertices of the IineLiA} belong to the tropical segmeftonv (i, j). Moreover;i € r;
andj € r;, wherer;, r; are maximal rays irLiAj.

Proof. Without loss of generality, assume that 1, j = 2. The points_land 2
have coordinates

0 a2
a1 0
as |’ agy |’
a41 42

respectively and we know that the coordinates of the vexrtidd.;, depend on the
type of L12. This type is no{12, 34}, by lemmd.b.
Say the type of.15 is {13,24}. ThenM, m and« are shown in[(13), with

azz + a4 < asgp +aq2 = Q. (14)

Using (11), the vertices af, are

—a41 —as1
—a —a
U13 — 42 , (024 — 32 ) (15)
az1 — a41 0
0 Q42 — a32
We have
—a41 a12 — G42
a1 — a41 —a42
ol = @ =10 (~aq) ®20 (—as2)
asy — a41 az2 — a42
0 0
and
—as1 a12 — a32
az; — asy —a32
v = N 0 =10 (~a31) 20 (—asz),
aq1 — a31 aq2 — a32

using inequalities{1) and_(IL4). This shows th&t andv?* belong totconv(1,2).
Moreover

a41 0 0
1_pi3— | Gartaa | | antap—an | _ foa 1
a41 0 0
whencel € r,. Similarly, 2 — v** = [— f13,0,0, 0]!, whence2 € ;.
Computations are analogous if the type of libg is {14, 23}. O
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Recall that the tropical distance induces the usual togol®y compactness
of tconv(i, j), there is a vertex im;‘} closest toi, denotedij, and a vertex im;‘}
closest toj, denoted;ji, distances considered tropically. Of courge= ij if and
only if L;; is {1234}.

In the following theorem, notice that distances depend eriythe ofLiA}.

Theorem 7. Assumed € R***is Nl and let{i, j, k, 1} = [4] withi < j. If the type
of the lineL;} is {ik, ji}, then

1. d(i,i5) = | fil,
2. d(g, 7i) = |ful,
3. d(ig, ji) = | fu| (this case is easy to remember).

Proof. Without loss of generality, assume thiat 1, j = 2. We know that the type
of L5 is not{12, 34}, by lemmdb.

Say the type of_q, is {13,24}, so thatk = 3, [ = 4. By definition of F' and
(I4), we havefs, > 0. Go back to[(I5), where coordinates fdf andv?* were
computed, to get

asy — a4 asi — a4 — asz + a4 f34
P13 24— | G327 Qa2 | _ 0 _ 0
asi — a1 asi — a4 — asz + a4 J34
az2 — a4 0 0

and we obtain
d(vlgav24) = f34-
Moreover, from[(16) and lemnia 3 (fgr= 2), we get

d(L,v"3) = — fos = | foul,

Similarly,
24
d(2,v**) = fi3 = | f13]-
Now

ai2 + as1 a12 + a41 — G42 —f14
9 _ 3 — as2 | _ 0 _ 0
- ass + a41 — a3y ass + a41 — a3l — a42 —f34
a49 0 0

By additivity (12), we havefis + f34 = fi4, With f13 > 0, f14 > 0 and f34 > 0.
Thus, by the definition of tropical distance, we get

d(2,v") = max{fi4, fa4, f13} = fia.
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We haved(2,v**) = fi3 < fi4a = d(2,v'?), showing that?? is closer to2 than

v13. Thus we can relabel as follows
v* =21, o =12,

This proves the three statements for tyji8, 24}. Computations are similar if the
type of L5 is {14, 23}. O

Example 8. Assume that € R are such thatd is NI, with

0 —12 * «x
—-10 0 * =

A= —11 —-14 0 =* |’
—-15 =13 % 0

(this can be achieved, for instance, takin@0 < ay; < —10, for k,1 = 3,4 and
k # 1). We have

22 9 14
F= -13 -8
)

andd(1,2) = 22, by lemmald. By the last part in theorém 7, we get
d(12,21) = |f3a] =5 # 0,

whence the type df;, is not{1234}. It can be eitheq{ 13,24} or {14, 23}, since 1
and 2 must be separated by the comma, by ledma 5. We have

12 14
—10 -8
—2 0

If the type werg[14, 23}, by theorenl 7 we would have
d(1,12) = |fos| =13, d(2,21) = |fua| =14, 22# 1345+ 14,

contradicting that the tropical distance is additive fordl tropically collinear
points. Thus the type igl3, 24} and then

d(1,12) = |foa| =8, d(2,21) =|f13] =9, 22=8+5+09.

A longer way to obtain the same result is computidgm and « in (13). We
get that the type of.¢}, is {13,24}, and then formulad(11) provide the coordinates
of 12and 21

Corollary 9. Assumed € R***is Nl and letl < i < j < 4. If the type of the line
Li}is {1234}, then fork  [4] \ {i, j} we have

1. d(@,ig) = [ firl,
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5 General case

Our aim for this section is to describe the tieg@, q) through the matrix'. Let pq
(resp. gp) denote the vertex closest to(respqg) in L(p, q), if such a vertex exists.
These two are the only inner vertices of the libé, ¢) that we will consistently
label. Vertices ofL(p, ¢) may receive temporary labels, suchvas), z, y, z etc.

Let A € R™ ™ be a NI matrix. For the rest of the paper, we assumejthatl
andq = 2, so thatL(p, q) = L(1,2) = L{,. This is no loss of generality. IF is as
in definition[2, then

fik >0, Jar <0, Vk (17)
fi2 = | Jpax | fral (18)

by lemmdB and the NI conditiofil(1).

Notation: For3 < s < n, let A° (resp. F’*) denote the principal minor of
(resp. ofF) of orders; in particular, A™ = A. The first two columns ofd® are
denotedl® and2s. The lineL(1%,2°) is denotedL?. It sits insideQ*~!, which can
be identified withH, ~ R*~!. In particular,L” = L(p,q). Let 12 (resp. 21°)
denote the vertex of* closest tol® (resp. t02°), if such a vertex exists. Let;
denote any ray in the; negative sense inside*~!, for j € [s — 1], andr$ any
ray in theejs. ;1 positive sense. We know thdt® is the finite union ofs rays
r{,...,rs and some edgés,, . . ., h, for certaint € N U {0}.

Definition 10. Fix s with 3 < s < n. If, for somel < k < [ < s, |fx| equals
either the distance between two adjacent verticegror it equalsd(1°,12°) or
d(21%,2¢%), then we will say thafy, is s—active

Definition 11. If |a| = |b| + |¢| with non—zeray, b, ¢ € R, we say that fractures by
means ob. We also say that wasformerly activeand thatb, c are newly active.

Consider the matrix' and assume thgf; is (s — 1)—active, withl < k < <
s — 1. Then, f; fractures by means of some entry of theh column, if and only if

| ferl > | frsl- (19)

Indeed, we will haveéfy;| = | fxs|+| /15|, following from additivity (12). In practice,
to find out if a fracture occurs by means of some entry ofsthilh column, we can
minimize the absolute value of the entries of th¢h column ofF™*.

Lemma 12. Let A € R™*™ be Nl and3 < s < n. Then point2° lies to the
northwest ofl¢ inside H,, ¢ R™.
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—0as1
a21 — As1

a31 — dsl

Gs—1,1 — Qs1
0

a2 — Ag2
—Qs2

a32 — As2

Gs—1,2 — Q52
0

Proof. By equivalence irfQ™ !, the coordinates af* and2® in H,, are

where the first and second coordinates compare as follows:
—as] 2 a12 — Gs2,

agy — as1 < —as2,
by (). This implies the result. O

Theorem 13. Letn > 3 and assume, ¢ are different points inQ"~! having rep-
resentativeg’, ¢’ in R™ whose coordinates are the first and second columns of a NI
matrix A € R™*". Then the matrix’, as in definitior 2, describes the lidgp, q)

as a balanced unrooted semi-labeled treenoieaves, which is caterpillar. Every
vertex inL(p, q) belongs taconv(p, ¢). The verticepq andgp exist inL(p, q). The
distances between pairs of adjacent verticed.{p, ¢) and the distanced(p, pq),
d(¢p, q) andd(p, q) are certain entries of the matrip¢’|. In addition, ifp andq are
generic, thernL(p, q) is trivalent.

Proof. We havep = 1 andq = 2 andd(1,2) = fi2, by lemmd# and(17). Write

First, let us assume that the couplgy is generic. Then, L and F' are also
generic.
With notation from p. [Il7, let us begin with the ling?, joining the points

0 | _| —an a2
[am]_{ 0 }and[ 0 ].Then
d(1?,2?%) = |a1z + a21| = fie,

by lemmd4. We have, # 0, by genericity ofF" and f15 is 2—active. This is the
initial step.

The proof proceeds by recursion, < s < n. In the s— th step, the lind.*
is obtained from the lind.*~!, by tropical modification. This precisely means that
exactly ong(s — 1)—active entry ofF'*~! fractures. Moreover, after the-th step is
completed, we have the following properties:

1. in each row off%, there is some—active entry,
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. there are exactly twe-active entries in the last column Bf; these are newly
active,

. there are some negative and some posithactive entries iF's,

. the sum of the absolute values of &Hactive entries irf** is equal tofis.

if s =3,thenfis + fo3 = f13, by additivity (ﬂ) By m) and]le),
| frz] = | fra] + [ fas]

is a fracture ofd(12,22) = f1». The lineL? has a vertex, which we denote
w3, whose coordinates are given i (8)

—ma3 —a31
wr=| —miz | = | —az | =10 (—az1) ©26 (—az),
—T1N12 0

equalities holding by the NI hypothesis. Then

asi 0 asi + a2 —f13
P-wd=|ap+tan | =| foz |, 2°-uw®= asy | = 0
asy 0 aso 0

(20)

whence
d(13,w?) = | fos| = —faz, d(2%,w?) = |f13] = fis.

Now f13, fo3 become 3—active, whilé,, stops being active.

Equalities [2D) tell us that walking northbound from palritfor | fo3| units,
we reachw?, and walking eastbound from poi@# for fi3 units, we also
reachw?; see figuré€b, left. The liné? satisfies the statement of the theorem
and it is trivalent.

if s = 4, there are two cases: eithgéy; < 0 or f34 > 0 (by genericity ofF,

we havefss # 0). Both cases were studied in theorelm 7. Being generic, the
tree L* is of type {13,24} or {14,23}, by lemmdb. This means that leaves
1 and 2 are separated already at step 4. They will remain separated ever
after. In particular, we will have

1° erj, 2° ery, Vs > 4. (22)
The fracture is

d(L?, w®) = | fas| = | foa| + | f3al, if f34 <0 (22)
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3 3[ 4 _
r w k=3 r k=4
!
12%=w* @ 4
¢ 13 4
r ! rt !
2 2

Figure 4: Modification and fracture occurring at step- 4, whenfz, < 0.

or
d(2%, w®) = | fis] = | f1a| + | f4l, if f34 > 0. (23)

In the previous two steps (= 3 or s = 4) two entries in the last column of
F* becames—active, while one entry of*—! stopped being active, due to the
fracture. Moreover, properti€$ 1[id 4 in[p.] 18 hold true.

Assuming that propertidd 1 fd 4 hold at step— 1), notice that exactly one
fracture of ong(s — 1)—active entry off’*~! occurs at step, for each5 < s < n.
Indeed, recall{19) and consideEe [s — 1] (« depending or) such that

sl = min | frl. 24
[fisl = min [ sl (24)

By genericity of F’, such an index is unique and thus, sonfe — 1)—active entry on
thei—th row of F'¢ fractures. We have only one fracture at steplue to properties
[Ito[4 and the fact that equalitids {12) are not independeng fixeds.

Now we proceed to describE as a tree, based on data i Assume, by
recursion, that we have described the tfée! and thatZL™! is trivalent. WriteL’
instead of."~1, for simplicity (similar meaning fop’, ¢, F’, etc.). Being trivalent,
L’ is described by a finite family of bipartitions ¢f — 1]:

{Slv Sf}> {S2> 55}, SRR {St> Stc}a
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wheret = n — 4 is the number of inner edges &f (by recursion),S; C [n — 1],
with card S; > 2 andcard S% > 2 (by trivalency). Moreover, the distances between
pairs of adjacent vertices if’ and the distance$(p’, p'¢’), d(¢'p’, ¢') andd(p’, ¢’)

are certain entries dff”’|. Now, the treeL is atropical modificationof L’. That
means that a ray sprouts up from,’ at some point of/, labeledw temporarily,
with the balancing conditiorholding atw inside L. The pointw becomes a vertex
of L (although, it is not a vertex ii’). By genericity, we face two cases:

1. If w belongs to theelative interiorof some inner edge of L’. Say this
segment corresponds to the bipartitipf,, S¢'}. We know that the leaves 1
and 2 are separated since step 4, so that

(1,2} NS, # 0 and{1,2} NS¢ 0.

Sayl € S; and2 € S§. Removal of the relative interior of splits the tree/
into two subtreesl| and L), named so that 1 is a leaf if,. Then, the tree
L is described by

(51,55}, .. {Si—1. 8¢, Y, {Se U {n}, S5}, {Si, S§ U {n}},
where

o SuU{n}, if S¢isa subset of leaves df, or of LY,
s, otherwise.

Moreover, we know that the endpoints ofare vertices ofL’: let us label
themuy, vo temporarily, so that; € L. Then

d(v1,v2) = | ful,

for somel < k <l < n —1and sofy; is (n — 1)—active. Due to tropical
modification, this entry fractures, yielding

| frtl = | frn| + | fin]
and so
d(vlvw) = ‘fln’v d(v%w) = ’fkn’v (25)
or
d(vi,w) = |fin|, d(ve,w) = |finl. (26)

We decide betwee (P5) arld {26) by computing the coordirattesin two
different ways: beginning frorh and beginning fron2.
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2. If w belongs to theelative interiorof a rayr;, somej € [n — 1]. ThenL is
given by

{{j,n},{l,,]—1,]—|—1,,n—l}},{@,@},{g,gg},,{gt,gf},

where
g_[sun) ifjes,
s, otherwise.

Due to tropical modification, one fracture of ofre— 1)—active fy; occurs:

| frtl = | fen| + | finl-

By recursion, we havéfy| = d(1/,12') or | fy| = d(2/,21’), and recalling
thatl’ € r}, and2’ € r| (this holds true since step= 4), we get

j=2orj=1. (27)
o If |fri] = d(1/,12'), thenj = 2. We relabelw as_12 relabel12’ asv
and obtain
d(1,12) = [fin|, d(12,v) = |fral, (28)
or
d(L,12) = |fenl, d(12,v) = [finl- (29)

We decide between (28) arid {29) by computing the coordiradtesin
two different ways: beginning from and beginning fron2.

o If |fr| = d(2/,21"), then the result is similar.

If the couplep, g is not generic, a sufficiently small perturbatipn; of them is
generic. We apply the previous paragraphg .t and we obtain a lind. Then,
the line L can be viewed as the result of the collapsing of some adjaegtites on
L, or the pointsp andpg may coincide. Same faoy andgp. Passing fromL to L
amounts to vanishing of some-activef;;, with1 < k <[ < s < n. The treeL is
caterpillar, though it might not be trivalent. O

Example 14. Forn =7,

0 —19
~15 0
17 —14
~16 —14
—20 -21
18 —17
27 —15 |
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w

Figure 5: Construction of the treein examplé_T}: step = 3.

Figure 6: Construction of the treein examplé_14: step = 4.

are the first two columns of a NI matrix = (a;;) (take, for instance-28 < a; <
—14,if s # tand3 < t < 7). Thend(1,2) = d(1%,22) = |f12| = fi12 = 34, by
lemmd# and

34 22 21 18 20 31
-12 -13 -16 —-14 -3
-1 -4 -2 9

F= 3 -1 10
2 13
11

For 3 < s < 7, active entries of'* will be boxed.

e s = 3(see figur€b). The vertex of the lihé, denotedw?, is[—as;, —asz, 0! =
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Figure 8: Construction of the treein exampld IH: step = 6.

[17,14,0]%, by Cramer’s rule[(B). We have a fracture

34 =224+12
| fiz| = [f13] + | fa3]

and
0 3
13 + 1265 = -3 | = 0 | =23+ 225 = wd.
—17 —14
Thus

d(13,w?) =12 = | fas], d(2%,w?) = 22 = | f13].

24
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Figure 9: Construction of the traein exampld_T#: final step.

The 3-activef,; are boxed below:

34 [22] 21 18 20 31

-12| =13 -16 —-14 -3

-1 -4 =2 9

F =
-3 -1 10

2 13

11

e s = 4 (see figuré6). We havel = f3; < 0 so, by the remark after lemma
[, the type of.# is {14,23}. This means that; andr} meet, and-3 and 3
meet too insidd.?. This is casé&l2 of the previous proof, with= 2. Since
2% ¢ r{, then the point where] andr{ meet must be1*. The entryfi3 is
3—active and we have the fracture

22=21-+1
| f13] = | f1a] + | f34]-

of d(23,w?) = | f13]. In fact,w* can be relabele@1* and

0
-3
—17 |
L _16 -

128 = 1" + 1265 = d(1%,12) = |fas] = 12,

2
0
—14 |’
—14

214 = 2% 4 2167 = d(2",21%) = | fu| = 21,

25



2 0
24 — 24 — g = 1 s d(124,ﬁ4) =1= |f34|a
2 0
34=21+4+1+12
and

34 22 18 20 31
III!I —-13 —-16 —14 -3
e -4 -2 9
-3 -1 10
2 13
11

e s =5 (see figurél7). Thefyi4| > |f15| and f14 is 4—active, so that

21 =18+ 3
| fia| = [ f1s] + | fas]

is a fracture ofd(2%,21%) = | f14|. This is cas&l2 of previous proof with= 1.
Thus, the tred.? is given by

{15,234}, {145, 23}

and it is caterpillar. We have

0 1
1 0

194+ 126 + lesg + 363 = | —13 | = | —14 | =25+ 18¢1, (31)
~13 14
—20 —21

so that this point isv®. Then,
d(1°,12°) = |fos| = 12, d(2°,21°) = | f15] = 18.

In addition to1°,12%, 215 and2°, there is one more vertex ih®, denotedv
temporarily, and we have

d(12°,v) = |faa] =1, d(21°,v) = |fas]| = 3,

34=18+3+1+12,
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34 22 21 20 31
-12] -13 -16 —14 -3

o -4 -2 9
-1 10

2 13

11

e s = 6 (see figur€IB). Thef¥ys| > |f16| @and f45 is 5—active, so that

3=1+2
| fas] = | fas| + | f56]

is a fracture ofd(21°,v) = |f5|. A rayr sprouts up from the segment of
L? joining 21° andv. This is cas€]l of the previous proof. This happens at a
point denotedv® temporarily and, therefore, treg® is given by

{15,2346}, {156,234}, {1456, 23}.

Thus, L is caterpillar and we have

0 1
-1 0
19412 + 1o+ lemi= | 0 | = | M| =204 1867 + 2em,
—15 —14
—20 —19
| —18 | | —17 |

and this point isw®. Thus,
d(215,w®) = |fs6| =2, d(w®,v) =|fi6| = 1, (this information is new)

d(2°,21%) = | f15] = 18,  d(v,12°) = |faa| = 1, d(125,1°) = | fos| = 12,
34=18+2+1+1+12,

34 22 21 20 31
-13 —16 —14 -3

o —4 -2 9
-3 [=1] 10

2] 13

11
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e s = 7 (see figuré). Thefyas| > |for| @and fa3 is 6—active, whence
12=34+9
| fas| = | for| + | fa7

is a fracture ofd(1°, 12%) = | fo3|. A rayr? sprouts out of{ (this is caséR of
previous proof, withj = 2) at a point labeledw”. The treeL = L7 is given

by
{15,23467}, {156, 2347}, {1456, 237}, {13456, 27}
and we have
i 0 [ 12 7
—12 0
—-17 -5
1+3e3=| —16 | = —4 | =2418e1+2e15+1e156+1€1456+9€13456
—20 —8
—18 —6
| —27 | | —15 |

(32)
so that this point isv”. Now, we relabety” as12. In addition to vertices 12
and 21 there are three more vertices i labeledx, y and z. We have

d(1,12) =3, d(12,z) =9, (this information is new)
d(z,y) =d(y,2z) =1, d(z,21)=2, d(2L,2) =18,
34=184+2+1+14+9+43,

34 22 21 [18] 20 31

-12 -13 -16 -—-14 |-3

o -4 -2 o) |
-3 |1 10
2 13
11
and finally
*x * d(2,21) * *
* * * * d(1,12)
|F| = d(z,y) * * d(12,z)
* d(y, 2) *
d(z,21) *
*

Remark: an algorithm is implicit in the the previous proceise details of it are
postponed to a future paper.
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